Answer :
To determine how many times greater the value [tex]\( 6 \times 10^8 \)[/tex] is compared to the value 300, we can follow these steps:
1. Identify the two values:
- Value 1: [tex]\( 6 \times 10^8 \)[/tex]
- Value 2: 300
2. Set up the division to find how many times greater Value 1 is than Value 2:
[tex]\[ \frac{6 \times 10^8}{300} \][/tex]
3. Simplify the calculation:
Let's break down the division step-by-step:
- First, express 300 in scientific notation: [tex]\( 300 = 3 \times 10^2 \)[/tex]
- Rewrite the division:
[tex]\[ \frac{6 \times 10^8}{3 \times 10^2} \][/tex]
- Simplify the coefficients (numerator and denominator):
[tex]\[ \frac{6}{3} = 2 \][/tex]
- Simplify the powers of 10:
[tex]\[ 10^8 \div 10^2 = 10^{8-2} = 10^6 \][/tex]
- Combine the simplified coefficients and powers of 10:
[tex]\[ 2 \times 10^6 \][/tex]
4. Conclusion:
The value [tex]\( 6 \times 10^8 \)[/tex] is [tex]\( 2 \times 10^6 \)[/tex] times greater than 300.
Therefore, the correct answer is:
[tex]\[ 2 \times 10^6 \][/tex]
1. Identify the two values:
- Value 1: [tex]\( 6 \times 10^8 \)[/tex]
- Value 2: 300
2. Set up the division to find how many times greater Value 1 is than Value 2:
[tex]\[ \frac{6 \times 10^8}{300} \][/tex]
3. Simplify the calculation:
Let's break down the division step-by-step:
- First, express 300 in scientific notation: [tex]\( 300 = 3 \times 10^2 \)[/tex]
- Rewrite the division:
[tex]\[ \frac{6 \times 10^8}{3 \times 10^2} \][/tex]
- Simplify the coefficients (numerator and denominator):
[tex]\[ \frac{6}{3} = 2 \][/tex]
- Simplify the powers of 10:
[tex]\[ 10^8 \div 10^2 = 10^{8-2} = 10^6 \][/tex]
- Combine the simplified coefficients and powers of 10:
[tex]\[ 2 \times 10^6 \][/tex]
4. Conclusion:
The value [tex]\( 6 \times 10^8 \)[/tex] is [tex]\( 2 \times 10^6 \)[/tex] times greater than 300.
Therefore, the correct answer is:
[tex]\[ 2 \times 10^6 \][/tex]