Simplify.

[tex]\[ -5 \frac{1}{4} - \left(-7 \frac{1}{2}\right) \][/tex]

A. [tex]\( 2 \frac{1}{4} \)[/tex]
B. [tex]\( 2 \frac{3}{4} \)[/tex]
C. [tex]\( -2 \frac{1}{4} \)[/tex]
D. [tex]\( -12 \frac{3}{4} \)[/tex]



Answer :

Let's simplify the given expression step-by-step:

We start with the expression:
[tex]\[ -5 \frac{1}{4} - \left( -7 \frac{1}{2} \right) \][/tex]

First, let's convert the mixed numbers to improper fractions.

For [tex]\(-5 \frac{1}{4}\)[/tex]:
[tex]\[ -5 \frac{1}{4} = -\left(5 + \frac{1}{4}\right) = -\left(\frac{20}{4} + \frac{1}{4}\right) = -\frac{21}{4} \][/tex]

For [tex]\(-7 \frac{1}{2}\)[/tex]:
[tex]\[ -7 \frac{1}{2} = -\left(7 + \frac{1}{2}\right) = -\left(\frac{14}{2} + \frac{1}{2}\right) = -\frac{15}{2} \][/tex]

Next, we substitute the improper fractions back into the expression:
[tex]\[ -\frac{21}{4} - \left( -\frac{15}{2} \right) \][/tex]

To subtract, we change the subtraction of a negative to addition:
[tex]\[ -\frac{21}{4} + \frac{15}{2} \][/tex]

To add these fractions, we need a common denominator. The common denominator for [tex]\(4\)[/tex] and [tex]\(2\)[/tex] is [tex]\(4\)[/tex]. We convert [tex]\(\frac{15}{2}\)[/tex] to a fraction with a denominator of [tex]\(4\)[/tex]:
[tex]\[ \frac{15}{2} = \frac{15 \times 2}{2 \times 2} = \frac{30}{4} \][/tex]

Now, we can add the fractions:
[tex]\[ -\frac{21}{4} + \frac{30}{4} = \frac{-21 + 30}{4} = \frac{9}{4} \][/tex]

Finally, let's convert the improper fraction [tex]\(\frac{9}{4}\)[/tex] to a mixed number:
[tex]\[ \frac{9}{4} = 2 \frac{1}{4} \][/tex]

Therefore, the simplified result of the expression is:
[tex]\[ 2 \frac{1}{4} \][/tex]