For the equation, find three ordered pair solutions by completing the table. Then use any two of the ordered pairs to graph the equation.

[tex]\[ x - y = 6 \][/tex]

Complete the table below.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
$\square$ & 0 \\
\hline
$\square$ & $\square$ \\
\hline
$\square$ & $\square$ \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the equation [tex]\( x - y = 6 \)[/tex] and complete the table to find three ordered pair solutions, let's find the missing values based on the provided results.

1. First ordered pair:

Given [tex]\( y = 0 \)[/tex]:
[tex]\[ x - 0 = 6 \implies x = 6 \][/tex]
The first ordered pair is [tex]\( (6, 0) \)[/tex].

2. Second ordered pair:

Choose a new value for [tex]\( y \)[/tex]. Let's use [tex]\( y = 3 \)[/tex]:
[tex]\[ x - 3 = 6 \implies x = 6 + 3 = 9 \][/tex]
The second ordered pair is [tex]\( (9, 3) \)[/tex].

3. Third ordered pair:

Choose another value for [tex]\( y \)[/tex]. Let's use [tex]\( y = -2 \)[/tex]:
[tex]\[ x - (-2) = 6 \implies x = 6 - (-2) = 6 + 2 = 8 \][/tex]
The third ordered pair is [tex]\( (4, -2) \)[/tex].

So the completed table and ordered pairs are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 0 \\ 9 & 3 \\ 4 & -2 \\ \hline \end{array} \][/tex]

Using any two of these ordered pairs, we can graph the equation [tex]\( x - y = 6 \)[/tex].

To graph:

1. Plot the points [tex]\((6, 0)\)[/tex] and [tex]\((9, 3)\)[/tex] on a coordinate plane.
2. Draw a straight line passing through these points, as they represent a linear relationship.
3. Verify that the point [tex]\((4, -2)\)[/tex] also lies on this line to ensure our solutions are correct.

This graph represents all the solutions to the equation [tex]\( x - y = 6 \)[/tex].