The terms of the binomial expansion are written below using the patterns.
[tex]\[
(m+2)^4=(1)\left(m^4\right)\left(2^0\right)+(4)\left(m^3\right)\left(2^1\right)+(6)\left(m^2\right)\left(2^2\right)+(4)\left(m^1\right)\left(2^3\right)+(1)\left(m^0\right)\left(2^4\right)
\][/tex]

Simplify each term to complete the expansion.
[tex]\[
(m+2)^4 = m^4 + \square m^3 + \square m^2 + \square m + \square
\][/tex]



Answer :

To fully expand [tex]\((m+2)^4\)[/tex], let's simplify each term step-by-step:

1. First Term:
[tex]\[(1) \cdot m^4 \cdot 2^0 = 1 \cdot m^4 \cdot 1 = m^4\][/tex]

2. Second Term:
[tex]\[(4) \cdot m^3 \cdot 2^1 = 4 \cdot m^3 \cdot 2 = 8m^3\][/tex]

3. Third Term:
[tex]\[(6) \cdot m^2 \cdot 2^2 = 6 \cdot m^2 \cdot 4 = 24m^2\][/tex]

4. Fourth Term:
[tex]\[(4) \cdot m \cdot 2^3 = 4 \cdot m \cdot 8 = 32m\][/tex]

5. Fifth Term:
[tex]\[(1) \cdot 2^4 = 1 \cdot 16 = 16\][/tex]

Putting it all together, we have:

[tex]\[ (m+2)^4 = m^4 + 8m^3 + 24m^2 + 32m + 16 \][/tex]

So the full expansion is:

[tex]\[ (m+2)^4 = m^4 + 8m^3 + 24m^2 + 32m + 16 \][/tex]

Therefore, the terms you need to fill in are:

[tex]\[ m^4 + \boxed{8m^3} + \boxed{24m^2} + \boxed{32m} + \boxed{16} \][/tex]