Consider the following geometric series:
[tex]\[ 4\left(\frac{1-k}{5}\right) + 8\left(\frac{1-k}{5}\right)^2 + 16\left(\frac{1-k}{5}\right)^3 \ldots \][/tex]

Determine the values of [tex]\( k \)[/tex].



Answer :

To determine the values of [tex]\( k \)[/tex] for which the given geometric series converges, we need to analyze the series step-by-step.

The given series is:
[tex]\[ 4 \left( \frac{1-k}{5} \right) + 8 \left( \frac{1-k}{5} \right)^2 + 16 \left( \frac{1-k}{5} \right)^3 + \ldots \][/tex]

First, we need to identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]) of the geometric series.

1. Identify the first term [tex]\(a\)[/tex]:
The first term [tex]\(a\)[/tex] in the series is:
[tex]\[ a = 4 \left( \frac{1-k}{5} \right) \][/tex]

2. Identify the common ratio [tex]\(r\)[/tex]:
To find the common ratio [tex]\(r\)[/tex], observe the ratio between successive terms:
[tex]\[ r = \frac{\text{second term}}{\text{first term}} = \frac{8 \left( \frac{1-k}{5} \right)^2}{4 \left( \frac{1-k}{5} \right)} = \frac{8 \left( \frac{1-k}{5} \right)^2}{4 \left( \frac{1-k}{5} \right)} = 2 \left( \frac{1-k}{5} \right) \][/tex]

Since in a geometric series, all terms are scaled by the common ratio [tex]\(r\)[/tex]:
[tex]\[ r = \frac{1-k}{5} \][/tex]

3. Convergence of the Geometric Series:
A geometric series converges if the absolute value of the common ratio [tex]\(r\)[/tex] is less than 1:
[tex]\[ |r| < 1 \][/tex]
Hence, we need to solve:
[tex]\[ \left| \frac{1-k}{5} \right| < 1 \][/tex]

4. Solving the inequality:
[tex]\[ \left| \frac{1-k}{5} \right| < 1 \][/tex]
This absolute value inequality can be broken down into two separate inequalities:
[tex]\[ -1 < \frac{1-k}{5} < 1 \][/tex]

Multiply all parts of the inequality by 5:
[tex]\[ -5 < 1 - k < 5 \][/tex]

Now, solve for [tex]\(k\)[/tex]:
[tex]\[ -5 < 1 - k \quad \text{and} \quad 1 - k < 5 \][/tex]

For the left part, add [tex]\(k\)[/tex] and 5 to both sides:
[tex]\[ -5 + k + 5 < 1 - k + k + 5 \][/tex]
Simplifies to:
[tex]\[ k < 6 \][/tex]

For the right part, subtract 1 from both sides:
[tex]\[ 1 - k - 1 < 5 - 1 \][/tex]
Simplifies to:
[tex]\[ -k < 4 \][/tex]
Multiply by -1 (which reverses the inequality):
[tex]\[ k > -4 \][/tex]

Thus, combining both parts, the values of [tex]\(k\)[/tex] for which the series converges are:
[tex]\[ -4 < k < 6 \][/tex]

Therefore, [tex]\(k\)[/tex] must satisfy the inequality:
[tex]\[ -4 < k < 6 \][/tex]
This is the range of values for [tex]\(k\)[/tex] that ensure the convergence of the given geometric series.