\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & -7 \\
\hline
-1 & 1 \\
\hline
0 & 9 \\
\hline
3 & -2 \\
\hline
\end{tabular}

What is the domain of the given function?

A. [tex]$\{x \mid x=-6,-1,0,3\}$[/tex]

B. [tex]$\{y \mid y=-7,-2,1,9\}$[/tex]

C. [tex]$\{x \mid x=-7,-6,-2,-1,0,1,3,9\}$[/tex]

D. [tex]$\{y \mid y=-7,-6,-2,-1,0,1,3,9\}$[/tex]



Answer :

To determine the domain of the given function, we need to identify all the possible [tex]\( x \)[/tex]-values from the given table. The domain of a function consists of all the input values for which the function is defined.

Looking at the provided table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -6 & -7 \\ \hline -1 & 1 \\ \hline 0 & 9 \\ \hline 3 & -2 \\ \hline \end{tabular} \][/tex]

we can see the [tex]\( x \)[/tex]-values listed are:

- [tex]\( x = -6 \)[/tex]
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = 3 \)[/tex]

These [tex]\( x \)[/tex]-values form the domain of the function.

Thus, the domain of the given function is [tex]\(\{x \mid x = -6, -1, 0, 3\}\)[/tex].

Among the options given:

1. [tex]\(\{x \mid x = -6, -1, 0, 3\}\)[/tex] (Correct)
2. [tex]\(\{y \mid y = -7, -2, 1, 9\}\)[/tex]
3. [tex]\(\{x \mid x = -7, -6, -2, -1, 0, 1, 3, 9\}\)[/tex]
4. [tex]\(\{y \mid y = -7, -6, -2, -1, 0, 1, 3, 9\}\)[/tex]

The correct option is:
[tex]\[ \{x \mid x = -6, -1, 0, 3\} \][/tex]