Y10 Summer Holidays Homework Units 9/10/11: Week 5

---

Solve the simultaneous equations:

[tex]\[
\begin{array}{l}
y = 3x + 5 \\
y = 4x^2 + x
\end{array}
\][/tex]

Give your answers correct to 2 decimal places. Write each set of answers on separate lines (e.g., [tex]\( x = 0.24, y = \)[/tex]).



Answer :

To solve the simultaneous equations [tex]\( y = 3x + 5 \)[/tex] and [tex]\( y = 4x^2 + x \)[/tex], we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations.

Here are the detailed steps:

1. Set the equations equal to each other:
Since both equations equal [tex]\( y \)[/tex], we can set them equal to each other to find [tex]\( x \)[/tex]:
[tex]\[ 3x + 5 = 4x^2 + x \][/tex]

2. Rearrange to form a quadratic equation:
Move all terms to one side to set the equation to 0:
[tex]\[ 4x^2 + x - 3x - 5 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 2x - 5 = 0 \][/tex]

3. Solve the quadratic equation:
We can solve the quadratic equation [tex]\( 4x^2 - 2x - 5 = 0 \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -5 \)[/tex].

4. Find [tex]\( x \)[/tex] values:
Apply the quadratic formula:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 4 \cdot (-5)}}{2 \cdot 4} \][/tex]
Simplify inside the square root:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 80}}{8} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{84}}{8} \][/tex]
Simplify [tex]\(\sqrt{84}\)[/tex]:
[tex]\[ x = \frac{2 \pm 2\sqrt{21}}{8} \][/tex]
Simplify further:
[tex]\[ x = \frac{1 \pm \sqrt{21}}{4} \][/tex]

5. Calculate the numerical values of [tex]\( x \)[/tex]:
[tex]\[ x_1 \approx -0.90 \][/tex]
[tex]\[ x_2 \approx 1.40 \][/tex]

6. Find the corresponding [tex]\( y \)[/tex] values:
Substitute each [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We'll use [tex]\( y = 3x + 5 \)[/tex]:
- For [tex]\( x_1 \approx -0.90 \)[/tex]:
[tex]\[ y_1 = 3(-0.90) + 5 \approx 2.31 \][/tex]
- For [tex]\( x_2 \approx 1.40 \)[/tex]:
[tex]\[ y_2 = 3(1.40) + 5 \approx 9.19 \][/tex]

Thus, the solutions to the simultaneous equations are:

[tex]\[ \begin{array}{l} x \approx -0.90, \quad y \approx 2.31 \\ x \approx 1.40, \quad y \approx 9.19 \end{array} \][/tex]

These values are rounded to 2 decimal places as requested.