What is the coefficient of the [tex]$x^6 y^3$[/tex] term in the expansion of [tex][tex]$(x+2y)^9$[/tex][/tex]?

A. 84
B. 168
C. 336
D. 672



Answer :

To find the coefficient of the [tex]\( x^6 y^3 \)[/tex] term in the expansion of [tex]\( (x + 2y)^9 \)[/tex], we can use the binomial theorem.

The binomial theorem states:
[tex]\[ (x + a)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} a^k \][/tex]

For the term [tex]\( x^a y^b \)[/tex] in the expansion:
[tex]\[ (x + 2y)^9 = \sum_{k=0}^{9} \binom{9}{k} x^{9-k} (2y)^k \][/tex]

We need to identify the coefficient for the term where [tex]\( x \)[/tex] is raised to the 6th power and [tex]\( y \)[/tex] is raised to the 3rd power.

Given:
- The power of [tex]\( x \)[/tex]: [tex]\( x^6 \)[/tex]
- The power of [tex]\( y \)[/tex]: [tex]\( y^3 \)[/tex]
- The total power [tex]\( n \)[/tex]: 9

So, we equate:
[tex]\[ 9 - k = 6 \quad \text{and} \quad k = 3 \][/tex]

Now we calculate the binomial coefficient and the term's coefficient:

1. Binomial coefficient [tex]\( \binom{9}{6} \)[/tex]:
[tex]\[ \binom{9}{6} = \binom{9}{3} = \frac{9!}{3!(9-3)!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 84 \][/tex]

2. The term involving [tex]\( (2y)^3 \)[/tex]:
[tex]\[ (2y)^3 = (2^3)(y^3) = 8y^3 \][/tex]

3. The full coefficient of [tex]\( x^6 y^3 \)[/tex]:
[tex]\[ 84 \times 8 = 672 \][/tex]

Thus, the coefficient of the [tex]\( x^6 y^3 \)[/tex] term in the expansion of [tex]\( (x + 2y)^9 \)[/tex] is:
[tex]\[ \boxed{672} \][/tex]