Answer :
Certainly! To convert the temperature from Kelvin (K) to degrees Celsius (°C), you can use the equation:
[tex]\[ \text{Celsius} (\degree C) = \text{Kelvin} (K) - 273.15 \][/tex]
Let's apply this step-by-step:
1. Given:
- Temperature in Kelvin, [tex]\( K = 1376.06 \)[/tex]
2. Apply the conversion formula:
- [tex]\[ \text{Celsius} = 1376.06 \, K - 273.15 \][/tex]
3. Subtract:
- [tex]\[ \text{Celsius} = 1376.06 - 273.15 \][/tex]
4. Simplify the result:
- [tex]\[ \text{Celsius} = 1102.91 \][/tex]
Thus, the temperature of the flame in degrees Celsius, expressed to six significant figures, is:
[tex]\[ 1102.910 \degree C \][/tex]
(Note: Here, we add an extra zero to ensure the answer has six significant figures.)
[tex]\[ \text{Celsius} (\degree C) = \text{Kelvin} (K) - 273.15 \][/tex]
Let's apply this step-by-step:
1. Given:
- Temperature in Kelvin, [tex]\( K = 1376.06 \)[/tex]
2. Apply the conversion formula:
- [tex]\[ \text{Celsius} = 1376.06 \, K - 273.15 \][/tex]
3. Subtract:
- [tex]\[ \text{Celsius} = 1376.06 - 273.15 \][/tex]
4. Simplify the result:
- [tex]\[ \text{Celsius} = 1102.91 \][/tex]
Thus, the temperature of the flame in degrees Celsius, expressed to six significant figures, is:
[tex]\[ 1102.910 \degree C \][/tex]
(Note: Here, we add an extra zero to ensure the answer has six significant figures.)