Solve for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] in the following matrix equation:

[tex]\[ \left(\begin{array}{cc} a+2 & b-4 \\ 1 & -2+c \end{array}\right) = \left(\begin{array}{cc} 3a-2 & 5b+6 \\ 1 & 4+2c \end{array}\right) \][/tex]



Answer :

To find the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] given the matrix equality

[tex]\[ \begin{pmatrix} a + 2 & b - 4 \\ 1 & -2 + c \end{pmatrix} = \begin{pmatrix} 3a - 2 & 5b + 6 \\ 1 & 4 + 2c \end{pmatrix}, \][/tex]

we shall equate corresponding elements of the two matrices and solve the resulting system of equations.

### Step 1: Equating corresponding elements

1. For the element at the position [tex]\((1,1)\)[/tex], we equate:
[tex]\[ a + 2 = 3a - 2 \][/tex]

2. For the element at the position [tex]\((1,2)\)[/tex], we equate:
[tex]\[ b - 4 = 5b + 6 \][/tex]

3. For the element at the position [tex]\((2,2)\)[/tex], we equate:
[tex]\[ -2 + c = 4 + 2c \][/tex]

(Note: The element at position [tex]\((2,1)\)[/tex] is [tex]\(1\)[/tex] in both matrices, so it does not provide additional information.)

### Step 2: Solving the equations

Equation 1:
[tex]\[ a + 2 = 3a - 2 \][/tex]

Rearrange to solve for [tex]\(a\)[/tex]:

[tex]\[ a + 2 = 3a - 2 \implies 2 + 2 = 3a - a \implies 4 = 2a \implies a = 2 \][/tex]

Equation 2:
[tex]\[ b - 4 = 5b + 6 \][/tex]

Rearrange to solve for [tex]\(b\)[/tex]:

[tex]\[ b - 4 = 5b + 6 \implies -4 - 6 = 5b - b \implies -10 = 4b \implies b = -\frac{10}{4} \implies b = -\frac{5}{2} \][/tex]

Equation 3:
[tex]\[ -2 + c = 4 + 2c \][/tex]

Rearrange to solve for [tex]\(c\)[/tex]:

[tex]\[ -2 + c = 4 + 2c \implies -2 - 4 = 2c - c \implies -6 = c \implies c = -6 \][/tex]

### Conclusion

The values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are:
[tex]\[ a = 2, \quad b = -\frac{5}{2}, \quad c = -6 \][/tex]