Answer :
Let's break down the expression step by step.
### For the expression on the left:
[tex]\[ 7 - \left(7^0 + 3(5 - 6 + 3)\right) \][/tex]
1. Simplify the inner parenthesis first:
[tex]\[ 5 - 6 + 3 = 2 \][/tex]
2. Next, perform the multiplication:
[tex]\[ 3 \times 2 = 6 \][/tex]
3. Calculate [tex]\( 7^0 \)[/tex]:
[tex]\[ 7^0 = 1 \][/tex]
4. Add the results from steps 2 and 3:
[tex]\[ 7^0 + 3(5 - 6 + 3) \][/tex] becomes
[tex]\[ 1 + 6 = 7 \][/tex]
5. Subtract the result from 7:
[tex]\[ 7 - 7 = 0 \][/tex]
So, the final result for the expression on the left is [tex]\( 0 \)[/tex].
### For the expression on the right:
[tex]\[ 2 + 6 \][/tex]
1. Add the two numbers:
[tex]\[ 2 + 6 = 8 \][/tex]
### Conclusion
For the expression given:
[tex]\[ 7 - \left(7^0 + 3(5 - 6 + 3)\right) \quad 2 + 6 = \, \][/tex]
The results are:
[tex]\[ 0 \quad \text{and} \quad 8 \][/tex]
Therefore, the final results are [tex]\( 0 \)[/tex] and [tex]\( 8 \)[/tex].
### For the expression on the left:
[tex]\[ 7 - \left(7^0 + 3(5 - 6 + 3)\right) \][/tex]
1. Simplify the inner parenthesis first:
[tex]\[ 5 - 6 + 3 = 2 \][/tex]
2. Next, perform the multiplication:
[tex]\[ 3 \times 2 = 6 \][/tex]
3. Calculate [tex]\( 7^0 \)[/tex]:
[tex]\[ 7^0 = 1 \][/tex]
4. Add the results from steps 2 and 3:
[tex]\[ 7^0 + 3(5 - 6 + 3) \][/tex] becomes
[tex]\[ 1 + 6 = 7 \][/tex]
5. Subtract the result from 7:
[tex]\[ 7 - 7 = 0 \][/tex]
So, the final result for the expression on the left is [tex]\( 0 \)[/tex].
### For the expression on the right:
[tex]\[ 2 + 6 \][/tex]
1. Add the two numbers:
[tex]\[ 2 + 6 = 8 \][/tex]
### Conclusion
For the expression given:
[tex]\[ 7 - \left(7^0 + 3(5 - 6 + 3)\right) \quad 2 + 6 = \, \][/tex]
The results are:
[tex]\[ 0 \quad \text{and} \quad 8 \][/tex]
Therefore, the final results are [tex]\( 0 \)[/tex] and [tex]\( 8 \)[/tex].