Select the best answer for the question.

11. The sum of [tex]\frac{1}{6}, \frac{2}{3},[/tex] and [tex]\frac{1}{4}[/tex] is:

A. [tex]\frac{13}{12}[/tex], or [tex]1 \frac{1}{12}[/tex]

B. [tex]\frac{4}{12}[/tex], or [tex]\frac{1}{3}[/tex]

C. [tex]\frac{2}{72}[/tex], or [tex]\frac{1}{36}[/tex]

D. [tex]\frac{11}{12}[/tex]



Answer :

To find the sum of the fractions [tex]\(\frac{1}{6}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], and [tex]\(\frac{1}{4}\)[/tex], follow these steps:

1. Identify the Least Common Denominator (LCD):
The denominators we have are [tex]\(6\)[/tex], [tex]\(3\)[/tex], and [tex]\(4\)[/tex]. The LCD of these numbers is [tex]\(12\)[/tex].

2. Convert Each Fraction to an Equivalent Fraction with the LCD:
- For [tex]\(\frac{1}{6}\)[/tex]:
[tex]\[ \frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12} \][/tex]
- For [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
- For [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12} \][/tex]

3. Add the Fractions:
Now, add the fractions with the common denominator:
[tex]\[ \frac{2}{12} + \frac{8}{12} + \frac{3}{12} = \frac{2 + 8 + 3}{12} = \frac{13}{12} \][/tex]

4. Simplify the Fraction (if necessary):
The fraction [tex]\(\frac{13}{12}\)[/tex] is already in its simplest form. You can also express it as a mixed number:
[tex]\[ \frac{13}{12} = 1 \frac{1}{12} \][/tex]

The best answer is:
A. [tex]\(\frac{13}{12}\)[/tex], or [tex]\(1 \frac{1}{12}\)[/tex].