Answer :
To express the fractions [tex]\( \frac{3}{4} \)[/tex], [tex]\( \frac{7}{16} \)[/tex], and [tex]\( \frac{5}{8} \)[/tex] with the same common denominator:
1. Identify the Least Common Denominator (LCD):
- The denominators are [tex]\(4\)[/tex], [tex]\(16\)[/tex], and [tex]\(8\)[/tex].
- The least common multiple of these denominators is [tex]\(16\)[/tex].
2. Convert each fraction to have the LCD of [tex]\(16\)[/tex]:
- Convert [tex]\( \frac{3}{4} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \)[/tex]
- Convert [tex]\( \frac{7}{16} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{7}{16} = \frac{7}{16} \)[/tex] (already has denominator [tex]\(16\)[/tex])
- Convert [tex]\( \frac{5}{8} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16} \)[/tex]
3. Summarize the results:
- The fractions [tex]\( \frac{3}{4} \)[/tex], [tex]\( \frac{7}{16} \)[/tex], and [tex]\( \frac{5}{8} \)[/tex], when expressed with the least common denominator [tex]\(16\)[/tex], are [tex]\( \frac{12}{16} \)[/tex], [tex]\( \frac{7}{16} \)[/tex], and [tex]\( \frac{10}{16} \)[/tex], respectively.
Therefore, the best answer is:
A. [tex]\( \frac{12}{16}, \frac{7}{16}, \frac{10}{16} \)[/tex]
1. Identify the Least Common Denominator (LCD):
- The denominators are [tex]\(4\)[/tex], [tex]\(16\)[/tex], and [tex]\(8\)[/tex].
- The least common multiple of these denominators is [tex]\(16\)[/tex].
2. Convert each fraction to have the LCD of [tex]\(16\)[/tex]:
- Convert [tex]\( \frac{3}{4} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \)[/tex]
- Convert [tex]\( \frac{7}{16} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{7}{16} = \frac{7}{16} \)[/tex] (already has denominator [tex]\(16\)[/tex])
- Convert [tex]\( \frac{5}{8} \)[/tex] to an equivalent fraction with a denominator of [tex]\(16\)[/tex].
- [tex]\( \frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16} \)[/tex]
3. Summarize the results:
- The fractions [tex]\( \frac{3}{4} \)[/tex], [tex]\( \frac{7}{16} \)[/tex], and [tex]\( \frac{5}{8} \)[/tex], when expressed with the least common denominator [tex]\(16\)[/tex], are [tex]\( \frac{12}{16} \)[/tex], [tex]\( \frac{7}{16} \)[/tex], and [tex]\( \frac{10}{16} \)[/tex], respectively.
Therefore, the best answer is:
A. [tex]\( \frac{12}{16}, \frac{7}{16}, \frac{10}{16} \)[/tex]