Select all the correct answers.

Which three expressions are equivalent to the expression [tex]$3x - 12 - 2(x + 12)$[/tex]?

A. [tex]$3x - 12 - 2x + 24$[/tex]
B. [tex][tex]$3(x - 4) - 2x - 24$[/tex][/tex]
C. [tex]$3(x - 4) - 2(x + 12)$[/tex]
D. [tex]$3(x + 4) - 2(x + 12)$[/tex]
E. [tex][tex]$x + 12$[/tex][/tex]
F. [tex]$x - 36$[/tex]



Answer :

To determine which expressions are equivalent to the given expression [tex]\(3x - 12 - 2(x + 12)\)[/tex], we need to simplify and compare each expression.

1. Given expression:
[tex]\[ 3x - 12 - 2(x + 12) \][/tex]
Simplify within the parentheses:
[tex]\[ 3x - 12 - 2x - 24 \][/tex]
Combine like terms:
[tex]\[ x - 36 \][/tex]

So, we need to find the expressions that simplify to [tex]\(x - 36\)[/tex].

2. Option 1: [tex]\(3x - 12 - 2x + 24\)[/tex]
Simplify by combining like terms:
[tex]\[ 3x - 2x - 12 + 24 = x + 12 \][/tex]
This does not match [tex]\(x - 36\)[/tex].

3. Option 2: [tex]\(3(x - 4) - 2x - 24\)[/tex]
Simplify within the parentheses:
[tex]\[ 3x - 12 - 2x - 24 \][/tex]
Combine like terms:
[tex]\[ x - 36 \][/tex]
This matches [tex]\(x - 36\)[/tex].

4. Option 3: [tex]\(3(x - 4) - 2(x + 12)\)[/tex]
Simplify within the parentheses:
[tex]\[ 3x - 12 - 2x - 24 \][/tex]
Combine like terms:
[tex]\[ x - 36 \][/tex]
This matches [tex]\(x - 36\)[/tex].

5. Option 4: [tex]\(3(x + 4) - 2(x + 12)\)[/tex]
Simplify within the parentheses:
[tex]\[ 3x + 12 - 2x - 24 \][/tex]
Combine like terms:
[tex]\[ x - 12 \][/tex]
This does not match [tex]\(x - 36\)[/tex].

6. Option 5: [tex]\(x + 12\)[/tex]
This is already simplified and it does not match [tex]\(x - 36\)[/tex].

7. Option 6: [tex]\(x - 36\)[/tex]
This is already simplified and matches [tex]\(x - 36\)[/tex].

Therefore, the correct expressions that are equivalent to [tex]\(3x - 12 - 2(x + 12)\)[/tex] are:

- [tex]\(3(x - 4) - 2x - 24\)[/tex]
- [tex]\(3(x - 4) - 2(x + 12)\)[/tex]
- [tex]\(x - 36\)[/tex]

These correspond to options [tex]\(2\)[/tex], [tex]\(3\)[/tex], and [tex]\(6\)[/tex].