Match the polynomial on the left with the corresponding polynomial on the right.

1. Add: [tex]\left(2 x^2+3 x-1\right) + \left(x^2-2 x+3\right)[/tex]
2. Find the opposite of: [tex]3 x^2-x-4[/tex]
3. Subtract: [tex]\left(x^2-2 x+3\right) - \left(3 x+4 x^2-1\right)[/tex]

[tex]
\begin{array}{l}
A. -2 x^2-6 x+2 \\
B. -3 x^2-5 x+4 \\
C. -3 x^2+x+4 \\
D. 3 x^2+x+2 \\
E. 3 x^2+5 x+4
\end{array}
[/tex]



Answer :

Let's solve each problem step-by-step and match the results accordingly:

1. Addition of Polynomials:
[tex]\[ (2x^2 + 3x - 1) + (x^2 - 2x + 3) \][/tex]
Combine like terms:
[tex]\[ 2x^2 + x^2 + 3x - 2x - 1 + 3 \][/tex]
Simplify:
[tex]\[ 3x^2 + x + 2 \][/tex]
So, the result of the addition is:
[tex]\[ 3x^2 + x + 2 \][/tex]

2. Finding the Opposite of a Polynomial:
[tex]\[ 3x^2 - x - 4 \][/tex]
Change the signs of all terms:
[tex]\[ -3x^2 + x + 4 \][/tex]
So, the opposite of the polynomial is:
[tex]\[ -3x^2 + x + 4 \][/tex]

3. Subtraction of Polynomials:
[tex]\[ (x^2 - 2x + 3) - (4x^2 + 3x - 1) \][/tex]
Distribute the negative sign and combine like terms:
[tex]\[ x^2 - 2x + 3 - 4x^2 - 3x + 1 \][/tex]
Simplify:
[tex]\[ x^2 - 4x^2 - 2x - 3x + 3 + 1 \][/tex]
[tex]\[ -3x^2 - 5x + 4 \][/tex]
So, the result of the subtraction is:
[tex]\[ -3x^2 - 5x + 4 \][/tex]

Given these results, we can match them with the options provided:

- Addition:
[tex]\[ (2x^2 + 3x - 1) + (x^2 - 2x + 3) = 3x^2 + x + 2 \][/tex]
So, match with [tex]\(3x^2 + x + 2\)[/tex].

- Opposite:
[tex]\[ \text{The opposite of } 3x^2 - x - 4 \text{ is } -3x^2 + x + 4 \][/tex]
So, match with [tex]\(-3x^2 + x + 4\)[/tex].

- Subtraction:
[tex]\[ (x^2 - 2x + 3) - (4x^2 + 3x - 1) = -3x^2 - 5x + 4 \][/tex]
So, match with [tex]\(-3x^2 - 5x + 4\)[/tex].

Summary of Matching:

1. [tex]\((2x^2 + 3x - 1) + (x^2 - 2x + 3) = 3x^2 + x + 2\)[/tex]
[tex]\[ \text{matches with } 3x^2 + x + 2 \][/tex]
2. [tex]\(-3x^2 + x + 4 \text{ matches with } -3x^2 + x + 4\)[/tex]
3. [tex]\((x^2 - 2x + 3) - (4x^2 + 3x - 1) = -3x^2 - 5x + 4\)[/tex]
[tex]\[ \text{matches with } -3x^2 - 5x + 4 \][/tex]