The function [tex]s(V)=\sqrt[3]{V}[/tex] describes the side length, in units, of a cube with a volume of [tex]V[/tex] cubic units. Jason wants to build a cube with a minimum volume of 64 cubic centimeters.

What is a reasonable range for [tex]s[/tex], the side length, in centimeters, of Jason's cube?

A. [tex]s \ \textgreater \ 0[/tex]
B. [tex]s \geq 4[/tex]
C. [tex]s \geq 8[/tex]
D. [tex]s \geq 16[/tex]



Answer :

To determine the side length [tex]\( s \)[/tex] of a cube with a given volume [tex]\( V \)[/tex], we use the function [tex]\( s(V) = \sqrt[3]{V} \)[/tex]. Here, we're given that the volume [tex]\( V \)[/tex] must be at least 64 cubic centimeters. Let's find the side length [tex]\( s \)[/tex] for this volume.

1. Calculate the side length for the minimum volume:
[tex]\[ s = \sqrt[3]{64} \][/tex]

2. Evaluate the cube root of 64:
[tex]\[ \sqrt[3]{64} = 4 \][/tex]

Therefore, if the volume of the cube is 64 cubic centimeters, the side length [tex]\( s \)[/tex] would be 4 centimeters.

3. Determine the reasonable range for [tex]\( s \)[/tex]:
- Since we have calculated that [tex]\( s = 4 \)[/tex] when [tex]\( V = 64 \)[/tex],
- And since [tex]\( V \)[/tex] is required to be at least 64 cubic centimeters, the side length [tex]\( s \)[/tex] cannot be less than 4 centimeters.

Consequently, the reasonable range for [tex]\( s \)[/tex] is:
[tex]\[ s \geq 4 \][/tex]

So, the appropriate range for the side length [tex]\( s \)[/tex] of Jason's cube is:
[tex]\[ s \geq 4 \][/tex]