Select the correct answer.

Which expression has the factor [tex]$(h+2)$[/tex]?

A. [tex]$2h^2+h$[/tex]
B. [tex][tex]$h^2+6h+5$[/tex][/tex]
C. [tex]$2h^2-4h$[/tex]
D. [tex]$h^2+h-2$[/tex]



Answer :

To determine which of the given expressions has the factor [tex]\((h + 2)\)[/tex], we will factor each expression and see which one includes [tex]\((h + 2)\)[/tex] as a factor.

1. Expression A: [tex]\(2h^2 + h\)[/tex]

2. Expression B: [tex]\(h^2 + 6h + 5\)[/tex]

3. Expression C: [tex]\(2h^2 - 4h\)[/tex]

4. Expression D: [tex]\(h^2 + h - 2\)[/tex]

Let's factorize each expression step-by-step:

Expression A: [tex]\(2h^2 + h\)[/tex]

Factor out the greatest common factor (GCF):
[tex]\[ 2h^2 + h = h(2h + 1) \][/tex]
The factors are [tex]\(h\)[/tex] and [tex]\((2h + 1)\)[/tex]. No factor of [tex]\((h + 2)\)[/tex] here.

Expression B: [tex]\(h^2 + 6h + 5\)[/tex]

To factor the quadratic expression, we need to find two numbers that multiply to [tex]\(5\)[/tex] and add up to [tex]\(6\)[/tex]. These numbers are [tex]\(1\)[/tex] and [tex]\(5\)[/tex]:

[tex]\[ h^2 + 6h + 5 = (h + 1)(h + 5) \][/tex]
The factors are [tex]\((h + 1)\)[/tex] and [tex]\((h + 5)\)[/tex]. No factor of [tex]\((h + 2)\)[/tex] here.

Expression C: [tex]\(2h^2 - 4h\)[/tex]

Factor out the greatest common factor (GCF):
[tex]\[ 2h^2 - 4h = 2h(h - 2) \][/tex]
The factors are [tex]\(2h\)[/tex] and [tex]\((h - 2)\)[/tex]. No factor of [tex]\((h + 2)\)[/tex] here.

Expression D: [tex]\(h^2 + h - 2\)[/tex]

To factor the quadratic expression, we need to find two numbers that multiply to [tex]\(-2\)[/tex] and add up to [tex]\(1\)[/tex]. These numbers are [tex]\(2\)[/tex] and [tex]\(-1\)[/tex]:

[tex]\[ h^2 + h - 2 = (h + 2)(h - 1) \][/tex]
The factors are [tex]\((h + 2)\)[/tex] and [tex]\((h - 1)\)[/tex].

Since [tex]\((h + 2)\)[/tex] is a factor of Expression D, the correct answer is:

D. [tex]\(h^2 + h - 2\)[/tex]