Bradenton Bakery is baking a cake for a customer's quinceañera. The cake mold is shaped like a cylinder with a diameter of 8 inches and a height of 6 inches.

Which of the following shows a correct method to calculate the number of cubic units of cake batter needed to fill the mold? Approximate using [tex]$\pi=\frac{355}{113}$[/tex].

A. [tex]V=\left(\frac{355}{113}\right)(8)^2(6)[/tex]
B. [tex]V=\left(\frac{355}{113}\right)(6)^2(8)[/tex]
C. [tex]V=\left(\frac{355}{113}\right)(6)^2(4)[/tex]
D. [tex]V=\left(\frac{355}{113}\right)(4)^2(6)[/tex]



Answer :

To calculate the volume of the cylindrical cake mold, we need to use the formula for the volume of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

Where:
- [tex]\( V \)[/tex] is the volume.
- [tex]\( \pi \)[/tex] is the constant pi (approximated here as [tex]\(\pi = \frac{355}{113}\)[/tex]).
- [tex]\( r \)[/tex] is the radius of the cylinder's base.
- [tex]\( h \)[/tex] is the height of the cylinder.

Given:
- Diameter of the cylinder [tex]\(d = 8 \text{ inches}\)[/tex].
- Height of the cylinder [tex]\(h = 6 \text{ inches}\)[/tex].

First, find the radius [tex]\( r \)[/tex]:
[tex]\[ r = \frac{d}{2} = \frac{8}{2} = 4 \text{ inches} \][/tex]

Now substitute the values into the volume formula:

[tex]\[ V = \left( \frac{355}{113} \right) \times 4^2 \times 6 \][/tex]

Calculate [tex]\(4^2\)[/tex]:

[tex]\[ 4^2 = 16 \][/tex]

So the expression becomes:

[tex]\[ V = \left( \frac{355}{113} \right) \times 16 \times 6 \][/tex]

Now perform the multiplication:

[tex]\[ 16 \times 6 = 96 \][/tex]

Therefore, the volume calculation simplifies to:

[tex]\[ V = \left( \frac{355}{113} \right) \times 96 \][/tex]

Upon evaluating this expression (knowing the precise result from running the actual calculation), we get:

[tex]\[ V \approx 301.59 \text{ cubic inches} \][/tex]

So, the correct method to calculate the number of cubic units of cake batter needed to fill the mold is:

[tex]\[ V = \left(\frac{355}{113}\right) (4)^2 (6) \][/tex]