Answer :
To solve the given equation:
[tex]\[ \sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = \frac{1}{\sqrt{2}} \sin A, \][/tex]
we need to derive both the left-hand side (LHS) and the right-hand side (RHS) and show that they are equal.
### Step-by-Step Solution:
1. Expression of the Left-Hand Side (LHS):
[tex]\[ \text{LHS} = \sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) \][/tex]
Recall that [tex]\(\sin^2 x = \frac{1 - \cos 2x}{2}\)[/tex]. However, we will use another useful trigonometric identity to simplify the expression directly:
[tex]\[ \sin^2 \theta - \sin^2 \phi = (\sin \theta + \sin \phi)(\sin \theta - \sin \phi) \][/tex]
2. Setting Up the Terms:
Let [tex]\(\theta = \frac{\pi^c}{8} + \frac{A}{2}\)[/tex] and [tex]\(\phi = \frac{\pi^c}{8} - \frac{A}{2}\)[/tex].
Then,
[tex]\[ \text{LHS} = \left(\sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) + \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right)\right) \left(\sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right)\right) \][/tex]
3. Applying the Sum-to-Product Identities:
First, compute [tex]\(\sin \theta + \sin \phi\)[/tex]:
[tex]\[ \sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) + \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = 2 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \][/tex]
Next, compute [tex]\(\sin \theta - \sin \phi\)[/tex]:
[tex]\[ \sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = 2 \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \][/tex]
4. Multiplying Both Results:
[tex]\[ \text{LHS} = \left( 2 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \right) \left( 2 \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \right) \][/tex]
Therefore,
[tex]\[ \text{LHS} = 4 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \][/tex]
Simplifying further using the product-to-sum identities or observing the symmetry, we recognize that it reduces following known simplifications of trigonometric identities:
[tex]\[ \text{LHS} = 4 \cdot \frac{1}{2} \sin A \left(\frac{\cos \left(\frac{A}{2}\right)}{\cos \left(\frac{A}{2}\right)}\right) \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sin A \][/tex]
5. Right-Hand Side (RHS):
The RHS is already given as:
[tex]\[ \text{RHS} = \frac{1}{\sqrt{2}} \sin A \][/tex]
### Conclusion:
Since our LHS and RHS, derived logically from trigonometric identities, both equate to [tex]\(\frac{1}{\sqrt{2}} \sin A\)[/tex], we confirm:
[tex]\[ \boxed{\sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = \frac{1}{\sqrt{2}} \sin A} \][/tex]
Both sides of the given equation are indeed equal.
[tex]\[ \sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = \frac{1}{\sqrt{2}} \sin A, \][/tex]
we need to derive both the left-hand side (LHS) and the right-hand side (RHS) and show that they are equal.
### Step-by-Step Solution:
1. Expression of the Left-Hand Side (LHS):
[tex]\[ \text{LHS} = \sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) \][/tex]
Recall that [tex]\(\sin^2 x = \frac{1 - \cos 2x}{2}\)[/tex]. However, we will use another useful trigonometric identity to simplify the expression directly:
[tex]\[ \sin^2 \theta - \sin^2 \phi = (\sin \theta + \sin \phi)(\sin \theta - \sin \phi) \][/tex]
2. Setting Up the Terms:
Let [tex]\(\theta = \frac{\pi^c}{8} + \frac{A}{2}\)[/tex] and [tex]\(\phi = \frac{\pi^c}{8} - \frac{A}{2}\)[/tex].
Then,
[tex]\[ \text{LHS} = \left(\sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) + \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right)\right) \left(\sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right)\right) \][/tex]
3. Applying the Sum-to-Product Identities:
First, compute [tex]\(\sin \theta + \sin \phi\)[/tex]:
[tex]\[ \sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) + \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = 2 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \][/tex]
Next, compute [tex]\(\sin \theta - \sin \phi\)[/tex]:
[tex]\[ \sin \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = 2 \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \][/tex]
4. Multiplying Both Results:
[tex]\[ \text{LHS} = \left( 2 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \right) \left( 2 \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \right) \][/tex]
Therefore,
[tex]\[ \text{LHS} = 4 \sin \left(\frac{\pi^c}{8}\right) \cos \left(\frac{A}{2}\right) \cos \left(\frac{\pi^c}{8}\right) \sin \left(\frac{A}{2}\right) \][/tex]
Simplifying further using the product-to-sum identities or observing the symmetry, we recognize that it reduces following known simplifications of trigonometric identities:
[tex]\[ \text{LHS} = 4 \cdot \frac{1}{2} \sin A \left(\frac{\cos \left(\frac{A}{2}\right)}{\cos \left(\frac{A}{2}\right)}\right) \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sin A \][/tex]
5. Right-Hand Side (RHS):
The RHS is already given as:
[tex]\[ \text{RHS} = \frac{1}{\sqrt{2}} \sin A \][/tex]
### Conclusion:
Since our LHS and RHS, derived logically from trigonometric identities, both equate to [tex]\(\frac{1}{\sqrt{2}} \sin A\)[/tex], we confirm:
[tex]\[ \boxed{\sin^2 \left(\frac{\pi^c}{8} + \frac{A}{2}\right) - \sin^2 \left(\frac{\pi^c}{8} - \frac{A}{2}\right) = \frac{1}{\sqrt{2}} \sin A} \][/tex]
Both sides of the given equation are indeed equal.