A right triangle [tex]\(ABC\)[/tex] has complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex].

If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], the value of [tex]\(\cos(C) = \square\)[/tex].

If [tex]\(\cos(C) = \frac{20}{29}\)[/tex], the value of [tex]\(\sin(A) = \square\)[/tex].



Answer :

To solve the problem, note that in a right triangle, the sum of the angles is [tex]\(90^\circ\)[/tex]. Therefore, angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex] are complementary, which means:

[tex]\[A + C = 90^\circ\][/tex]

In trigonometry, we know that for complementary angles ([tex]\(\theta\)[/tex] and [tex]\(90^\circ - \theta\)[/tex]):

[tex]\[\sin(A) = \cos(90^\circ - A)\][/tex]
[tex]\[\cos(C) = \cos(90^\circ - C)\][/tex]

### Step-by-Step Solution

1. Calculate [tex]\(\cos(C)\)[/tex] when [tex]\(\sin(A) = \frac{24}{25}\)[/tex]:

Since [tex]\(A\)[/tex] and [tex]\(C\)[/tex] are complementary:
[tex]\[\sin(A) = \cos(C)\][/tex]

Given that:
[tex]\[\sin(A) = \frac{24}{25}\][/tex]

Therefore:
[tex]\[\cos(C) = \frac{24}{25}\][/tex]

So, the value of [tex]\(\cos(C)\)[/tex] is:
[tex]\[ \cos(C) = \frac{24}{25} = 0.96 \][/tex]

2. Calculate [tex]\(\sin(A)\)[/tex] when [tex]\(\cos(C) = \frac{20}{29}\)[/tex]:

Again, since [tex]\(A\)[/tex] and [tex]\(C\)[/tex] are complementary:
[tex]\[\cos(C) = \sin(90^\circ - C)\][/tex]

Given that:
[tex]\[\cos(C) = \frac{20}{29}\][/tex]

This implies:
[tex]\[\sin(A) = \frac{20}{29}\][/tex]

So, the value of [tex]\(\sin(A)\)[/tex] is:
[tex]\[ \sin(A) = \frac{20}{29} \approx 0.6896551724137931 \][/tex]

Therefore, the solutions are:
1. [tex]\(\cos(C) = 0.96\)[/tex] when [tex]\(\sin(A) = \frac{24}{25}\)[/tex]
2. [tex]\(\sin(A) = 0.6896551724137931\)[/tex] when [tex]\(\cos(C) = \frac{20}{29}\)[/tex]