Answer :
Certainly! Let's solve each part step by step:
### (a) [tex]\(2.3 \times 10^5 + 1.9 \times 10^5\)[/tex]
1. First term: [tex]\(2.3 \times 10^5 = 230,000\)[/tex]
2. Second term: [tex]\(1.9 \times 10^5 = 190,000\)[/tex]
3. Adding these two:
[tex]\[ 230,000 + 190,000 = 420,000 \][/tex]
So the result for (a) is:
[tex]\[ 420,000 \][/tex]
### (b) [tex]\(4.5 \times 10^8 + 6.8 \times 10^7\)[/tex]
1. First term: [tex]\(4.5 \times 10^8 = 450,000,000\)[/tex]
2. Second term: [tex]\(6.8 \times 10^7 = 68,000,000\)[/tex]
3. Adding these two:
[tex]\[ 450,000,000 + 68,000,000 = 518,000,000 \][/tex]
So the result for (b) is:
[tex]\[ 518,000,000 \][/tex]
### (c) [tex]\(4.2 \times 10^6 + 1.3 \times 10^4\)[/tex]
1. First term: [tex]\(4.2 \times 10^6 = 4,200,000\)[/tex]
2. Second term: [tex]\(1.3 \times 10^4 = 13,000\)[/tex]
3. Adding these two:
[tex]\[ 4,200,000 + 13,000 = 4,213,000 \][/tex]
So the result for (c) is:
[tex]\[ 4,213,000 \][/tex]
### (d) [tex]\(5.8 \times 10^7 + 3.4 \times 10^3\)[/tex]
1. First term: [tex]\(5.8 \times 10^7 = 58,000,000\)[/tex]
2. Second term: [tex]\(3.4 \times 10^3 = 3,400\)[/tex]
3. Adding these two:
[tex]\[ 58,000,000 + 3,400 = 58,003,400 \][/tex]
So the result for (d) is:
[tex]\[ 58,003,400 \][/tex]
### (e) [tex]\(8.9 \times 10^4 + 1.1 \times 10^{-2}\)[/tex]
1. First term: [tex]\(8.9 \times 10^4 = 89,000\)[/tex]
2. Second term: [tex]\(1.1 \times 10^{-2} = 0.011\)[/tex]
3. Adding these two:
[tex]\[ 89,000 + 0.011 = 89,000.011 \][/tex]
So the result for (e) is:
[tex]\[ 89,000.011 \][/tex]
### (f) [tex]\(7.8 \times 10^5 + 1.0 \times 10^{-6}\)[/tex]
1. First term: [tex]\(7.8 \times 10^5 = 780,000\)[/tex]
2. Second term: [tex]\(1.0 \times 10^{-6} = 0.000001\)[/tex]
3. Adding these two:
[tex]\[ 780,000 + 0.000001 = 780,000.000001 \][/tex]
So the result for (f) is:
[tex]\[ 780,000.000001 \][/tex]
So, the final answers are:
(a) [tex]\(420,000\)[/tex]
(b) [tex]\(518,000,000\)[/tex]
(c) [tex]\(4,213,000\)[/tex]
(d) [tex]\(58,003,400\)[/tex]
(e) [tex]\(89,000.011\)[/tex]
(f) [tex]\(780,000.000001\)[/tex]
### (a) [tex]\(2.3 \times 10^5 + 1.9 \times 10^5\)[/tex]
1. First term: [tex]\(2.3 \times 10^5 = 230,000\)[/tex]
2. Second term: [tex]\(1.9 \times 10^5 = 190,000\)[/tex]
3. Adding these two:
[tex]\[ 230,000 + 190,000 = 420,000 \][/tex]
So the result for (a) is:
[tex]\[ 420,000 \][/tex]
### (b) [tex]\(4.5 \times 10^8 + 6.8 \times 10^7\)[/tex]
1. First term: [tex]\(4.5 \times 10^8 = 450,000,000\)[/tex]
2. Second term: [tex]\(6.8 \times 10^7 = 68,000,000\)[/tex]
3. Adding these two:
[tex]\[ 450,000,000 + 68,000,000 = 518,000,000 \][/tex]
So the result for (b) is:
[tex]\[ 518,000,000 \][/tex]
### (c) [tex]\(4.2 \times 10^6 + 1.3 \times 10^4\)[/tex]
1. First term: [tex]\(4.2 \times 10^6 = 4,200,000\)[/tex]
2. Second term: [tex]\(1.3 \times 10^4 = 13,000\)[/tex]
3. Adding these two:
[tex]\[ 4,200,000 + 13,000 = 4,213,000 \][/tex]
So the result for (c) is:
[tex]\[ 4,213,000 \][/tex]
### (d) [tex]\(5.8 \times 10^7 + 3.4 \times 10^3\)[/tex]
1. First term: [tex]\(5.8 \times 10^7 = 58,000,000\)[/tex]
2. Second term: [tex]\(3.4 \times 10^3 = 3,400\)[/tex]
3. Adding these two:
[tex]\[ 58,000,000 + 3,400 = 58,003,400 \][/tex]
So the result for (d) is:
[tex]\[ 58,003,400 \][/tex]
### (e) [tex]\(8.9 \times 10^4 + 1.1 \times 10^{-2}\)[/tex]
1. First term: [tex]\(8.9 \times 10^4 = 89,000\)[/tex]
2. Second term: [tex]\(1.1 \times 10^{-2} = 0.011\)[/tex]
3. Adding these two:
[tex]\[ 89,000 + 0.011 = 89,000.011 \][/tex]
So the result for (e) is:
[tex]\[ 89,000.011 \][/tex]
### (f) [tex]\(7.8 \times 10^5 + 1.0 \times 10^{-6}\)[/tex]
1. First term: [tex]\(7.8 \times 10^5 = 780,000\)[/tex]
2. Second term: [tex]\(1.0 \times 10^{-6} = 0.000001\)[/tex]
3. Adding these two:
[tex]\[ 780,000 + 0.000001 = 780,000.000001 \][/tex]
So the result for (f) is:
[tex]\[ 780,000.000001 \][/tex]
So, the final answers are:
(a) [tex]\(420,000\)[/tex]
(b) [tex]\(518,000,000\)[/tex]
(c) [tex]\(4,213,000\)[/tex]
(d) [tex]\(58,003,400\)[/tex]
(e) [tex]\(89,000.011\)[/tex]
(f) [tex]\(780,000.000001\)[/tex]