Answer :
To solve the determinant of the given 3x3 matrix
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right|, \][/tex]
we use the method of cofactor expansion along the first row. The determinant of a 3x3 matrix
[tex]\[ \left|\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right| \][/tex]
is calculated as follows:
[tex]\[ a \left|\begin{array}{cc} e & f \\ h & i \end{array}\right| - b \left|\begin{array}{cc} d & f \\ g & i \end{array}\right| + c \left|\begin{array}{cc} d & e \\ g & h \end{array}\right|. \][/tex]
In our matrix:
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right|, \][/tex]
we identify [tex]\( a = 3 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = 1 \)[/tex], and the corresponding 2x2 submatrices:
1. For [tex]\( a = 3 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 1 & 5 \\ 4 & 5 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (1 \cdot 5) - (5 \cdot 4) \right) = 5 - 20 = -15. \][/tex]
So, the term is
[tex]\[ 3 \cdot (-15) = -45. \][/tex]
2. For [tex]\( b = -2 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 3 & 5 \\ 3 & 5 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (3 \cdot 5) - (5 \cdot 3) \right) = 15 - 15 = 0. \][/tex]
So, the term is
[tex]\[ -2 \cdot 0 = 0. \][/tex]
3. For [tex]\( c = 1 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 3 & 1 \\ 3 & 4 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (3 \cdot 4) - (1 \cdot 3) \right) = 12 - 3 = 9. \][/tex]
So, the term is
[tex]\[ 1 \cdot 9 = 9. \][/tex]
Adding up these contributions, we have:
[tex]\[ -45 + 0 + 9 = -36. \][/tex]
Thus, the determinant of the matrix is:
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right| = -36. \][/tex]
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right|, \][/tex]
we use the method of cofactor expansion along the first row. The determinant of a 3x3 matrix
[tex]\[ \left|\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right| \][/tex]
is calculated as follows:
[tex]\[ a \left|\begin{array}{cc} e & f \\ h & i \end{array}\right| - b \left|\begin{array}{cc} d & f \\ g & i \end{array}\right| + c \left|\begin{array}{cc} d & e \\ g & h \end{array}\right|. \][/tex]
In our matrix:
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right|, \][/tex]
we identify [tex]\( a = 3 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = 1 \)[/tex], and the corresponding 2x2 submatrices:
1. For [tex]\( a = 3 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 1 & 5 \\ 4 & 5 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (1 \cdot 5) - (5 \cdot 4) \right) = 5 - 20 = -15. \][/tex]
So, the term is
[tex]\[ 3 \cdot (-15) = -45. \][/tex]
2. For [tex]\( b = -2 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 3 & 5 \\ 3 & 5 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (3 \cdot 5) - (5 \cdot 3) \right) = 15 - 15 = 0. \][/tex]
So, the term is
[tex]\[ -2 \cdot 0 = 0. \][/tex]
3. For [tex]\( c = 1 \)[/tex]:
[tex]\[ \left|\begin{array}{cc} 3 & 1 \\ 3 & 4 \end{array}\right|. \][/tex]
The determinant of this 2x2 matrix is calculated as
[tex]\[ \left( (3 \cdot 4) - (1 \cdot 3) \right) = 12 - 3 = 9. \][/tex]
So, the term is
[tex]\[ 1 \cdot 9 = 9. \][/tex]
Adding up these contributions, we have:
[tex]\[ -45 + 0 + 9 = -36. \][/tex]
Thus, the determinant of the matrix is:
[tex]\[ \left|\begin{array}{ccc} 3 & -2 & 1 \\ 3 & 1 & 5 \\ 3 & 4 & 5 \end{array}\right| = -36. \][/tex]