Fill in the table using this function rule.

[tex] y = -4x + 3 [/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & [tex]$\square$[/tex] \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
1 & [tex]$\square$[/tex] \\
\hline
2 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Certainly! Let's apply the function rule [tex]\( y = -4x + 3 \)[/tex] to each value of [tex]\( x \)[/tex] to find the corresponding [tex]\( y \)[/tex] values.

### Step-by-Step Calculation:

1. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = -4(-1) + 3 = 4 + 3 = 7 \][/tex]
So, when [tex]\( x = -1 \)[/tex], [tex]\( y = 7 \)[/tex].

2. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -4(0) + 3 = 0 + 3 = 3 \][/tex]
So, when [tex]\( x = 0 \)[/tex], [tex]\( y = 3 \)[/tex].

3. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = -4(1) + 3 = -4 + 3 = -1 \][/tex]
So, when [tex]\( x = 1 \)[/tex], [tex]\( y = -1 \)[/tex].

4. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = -4(2) + 3 = -8 + 3 = -5 \][/tex]
So, when [tex]\( x = 2 \)[/tex], [tex]\( y = -5 \)[/tex].

Given these calculations, we can fill in the table as follows:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -1 & 7 \\ \hline 0 & 3 \\ \hline 1 & -1 \\ \hline 2 & -5 \\ \hline \end{tabular} \][/tex]