Fill in the table using this function rule.

[tex] y = -10x - 3 [/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & [tex]$\square$[/tex] \\
\hline
-1 & [tex]$\square$[/tex] \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
1 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Let's fill in the table step-by-step using the given function rule [tex]\( y = -10x - 3 \)[/tex].

1. For [tex]\( x = -5 \)[/tex]:
- Substitute [tex]\( -5 \)[/tex] into the function:
[tex]\[ y = -10(-5) - 3 \][/tex]
- Calculate the value:
[tex]\[ y = 50 - 3 = 47 \][/tex]
Therefore, when [tex]\( x = -5 \)[/tex], [tex]\( y = 47 \)[/tex].

2. For [tex]\( x = -1 \)[/tex]:
- Substitute [tex]\( -1 \)[/tex] into the function:
[tex]\[ y = -10(-1) - 3 \][/tex]
- Calculate the value:
[tex]\[ y = 10 - 3 = 7 \][/tex]
Therefore, when [tex]\( x = -1 \)[/tex], [tex]\( y = 7 \)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( 0 \)[/tex] into the function:
[tex]\[ y = -10(0) - 3 \][/tex]
- Calculate the value:
[tex]\[ y = 0 - 3 = -3 \][/tex]
Therefore, when [tex]\( x = 0 \)[/tex], [tex]\( y = -3 \)[/tex].

4. For [tex]\( x = 1 \)[/tex]:
- Substitute [tex]\( 1 \)[/tex] into the function:
[tex]\[ y = -10(1) - 3 \][/tex]
- Calculate the value:
[tex]\[ y = -10 - 3 = -13 \][/tex]
Therefore, when [tex]\( x = 1 \)[/tex], [tex]\( y = -13 \)[/tex].

Now, we can fill in the table with these values:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -5 & 47 \\ \hline -1 & 7 \\ \hline 0 & -3 \\ \hline 1 & -13 \\ \hline \end{tabular} \][/tex]