Match each expression on the left with its quotient on the right.

[tex]\[
\begin{array}{l}
1. \quad \left(x^2 - 3x - 18\right) \div (x - 6) \\
2. \quad \left(x^3 - x^2 - 5x - 3\right) \div \left(x^2 + 2x + 1\right) \\
3. \quad \left(x^3 + 2x^2 - 1\right) \div \left(x^2 + x + 1\right)
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
A. \quad x - 3 \\
B. \quad x + 1 \, R \, -2x - 2 \\
C. \quad x + 3
\end{array}
\][/tex]

Click and hold an item in one column, then drag it to the matching item in the target before releasing. The target will highlight or the cursor will change.

Submit

Pass



Answer :

To solve the given problem, we need to perform polynomial division for each expression and find the corresponding quotients. Let's match them step-by-step based on the pre-determined results.

### Step-by-Step Breakdown

1. Expression 1:
[tex]\[ \left(x^2 - 3x - 18\right) \div (x - 6) \][/tex]
- Quotient: By dividing [tex]\(x^2 - 3x - 18\)[/tex] by [tex]\(x - 6\)[/tex], we obtain:
[tex]\[ x + 3 \][/tex]
- Remainder: The remainder is [tex]\(0\)[/tex].

2. Expression 2:
[tex]\[ \left(x^3 - x^2 - 5x - 3\right) \div \left(x^2 + 2x + 1\right) \][/tex]
- Quotient: By dividing [tex]\(x^3 - x^2 - 5x - 3\)[/tex] by [tex]\(x^2 + 2x + 1\)[/tex], we obtain:
[tex]\[ x - 3 \][/tex]
- Remainder: The remainder is [tex]\(0\)[/tex].

3. Expression 3:
[tex]\[ \left(x^3 + 2x^2 - 1\right) \div \left(x^2 + x + 1\right) \][/tex]
- Quotient: By dividing [tex]\(x^3 + 2x^2 - 1\)[/tex] by [tex]\(x^2 + x + 1\)[/tex], we obtain:
[tex]\[ x + 1 \][/tex]
- Remainder: The remainder is [tex]\(-2x - 2\)[/tex], which is often denoted as [tex]\( x + 1 \, R \, -2x - 2 \)[/tex].

### Matching Expressions and Quotients

Now, we match each expression with its quotient:
- [tex]\(\left(x^2 - 3x - 18 \right) \div (x - 6)\)[/tex] matches [tex]\(x + 3\)[/tex].
- [tex]\(\left(x^3 - x^2 - 5x - 3 \right) \div \left(x^2 + 2x + 1\right)\)[/tex] matches [tex]\(x - 3\)[/tex].
- [tex]\(\left(x^3 + 2x^2 - 1\right) \div \left(x^2 + x + 1\right)\)[/tex] matches [tex]\(x + 1 \, R \, -2x - 2\)[/tex].

Therefore, the final matches are:
1. [tex]\(\left(x^2 - 3x - 18\right) \div (x - 6)\)[/tex] → [tex]\(x + 3\)[/tex]
2. [tex]\(\left(x^3 - x^2 - 5x - 3\right) \div \left(x^2 + 2x + 1\right)\)[/tex] → [tex]\(x - 3\)[/tex]
3. [tex]\(\left(x^3 + 2x^2 - 1\right) \div \left(x^2 + x + 1\right)\)[/tex] → [tex]\(x + 1 \, R \, -2x - 2\)[/tex]

This ensures that each polynomial division is correctly matched with its quotient and remainder.