Warning: There is a checkbox at the bottom of the exam form that you MUST check.

---

Question 1 (Multiple Choice, Worth 2 points)

What are the domain and range of [tex]g(x)=\sqrt{x-3}[/tex]?

A. D: [tex][3, \infty)[/tex] and R: [tex][0, \infty)[/tex]



Answer :

To answer the question about the domain and range of the function [tex]\( g(x) = \sqrt{x - 3} \)[/tex], let's break it down step-by-step:

### Domain:
The domain of a function is the set of all possible input values (x-values) that the function can accept without causing any mathematical errors.

1. The expression inside the square root, [tex]\( x - 3 \)[/tex], must be non-negative because the square root of a negative number is not a real number.

2. Therefore, we need:
[tex]\[ x - 3 \geq 0 \][/tex]
3. Solving the inequality above:
[tex]\[ x \geq 3 \][/tex]

4. Hence, the domain is all x-values from 3 to infinity, inclusive:
[tex]\[ D: [3, \infty) \][/tex]

### Range:
The range of a function is the set of all possible output values (y-values).

1. The function [tex]\( g(x) = \sqrt{x - 3} \)[/tex] outputs the square root of [tex]\( x - 3 \)[/tex].

2. Considering the square root function produces non-negative results, the smallest value [tex]\( g(x) \)[/tex] can attain is when [tex]\( x = 3 \)[/tex], which gives [tex]\( g(3) = \sqrt{3 - 3} = \sqrt{0} = 0 \)[/tex].

3. As [tex]\( x \)[/tex] increases beyond 3, the value inside the square root [tex]\( (x - 3) \)[/tex] becomes larger, making [tex]\( g(x) \)[/tex] larger. There is no upper bound for the values of [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] can increase without limit.

4. Consequently, the range of [tex]\( g(x) \)[/tex] starts from 0 and goes to infinity:
[tex]\[ R: [0, \infty) \][/tex]

### Final Answer:
The domain and range of the function [tex]\( g(x) = \sqrt{x - 3} \)[/tex] are:
[tex]\[ \text{Domain: } [3, \infty) \quad \text{and} \quad \text{Range: } [0, \infty) \][/tex]