Classify each polynomial as a monomial, binomial, or trinomial. Combine like terms first.

[tex]\[
\begin{array}{l}
x^3 + 3x^3 + 2x \\
2x^3 + 5x + 3x^4 - x \\
4x - 5x + x - 2 \\
6x^2 + 5 - 2x^2 - 9
\end{array}
\][/tex]

[tex]\[
\square \\
\square \\
\square \\
\square
\][/tex]



Answer :

Let's classify each given polynomial as a monomial, binomial, or trinomial by first combining like terms:

1. Polynomial: [tex]\(x^3 + 3x^3 + 2x\)[/tex]

- Combine like terms:
- [tex]\(x^3 + 3x^3 = 4x^3\)[/tex]
- There is no need to combine [tex]\(2x\)[/tex] with any other term.

- Combined form: [tex]\(4x^3 + 2x\)[/tex]
- This polynomial has two distinct terms: [tex]\(4x^3\)[/tex] and [tex]\(2x\)[/tex].

Classification: Binomial

2. Polynomial: [tex]\(2x^3 + 5x + 3x^4 - x\)[/tex]

- Combine like terms:
- [tex]\(2x^3\)[/tex] remains as is, since there are no other [tex]\(x^3\)[/tex] terms.
- [tex]\(5x - x = 4x\)[/tex]
- [tex]\(3x^4\)[/tex] remains as is, since there are no other [tex]\(x^4\)[/tex] terms.

- Combined form: [tex]\(3x^4 + 2x^3 + 4x\)[/tex]
- This polynomial has three distinct terms: [tex]\(3x^4\)[/tex], [tex]\(2x^3\)[/tex], and [tex]\(4x\)[/tex].

Classification: Trinomial

3. Polynomial: [tex]\(4x - 5x + x - 2\)[/tex]

- Combine like terms:
- [tex]\(4x - 5x + x = 0x\)[/tex], since [tex]\(4x - 5x + x\)[/tex] cancels out to zero.
- The remaining term is [tex]\(-2\)[/tex].

- Combined form: [tex]\(-2\)[/tex]
- This polynomial has only one term: [tex]\(-2\)[/tex].

Classification: Monomial

4. Polynomial: [tex]\(6x^2 + 5 - 2x^2 - 9\)[/tex]

- Combine like terms:
- [tex]\(6x^2 - 2x^2 = 4x^2\)[/tex]
- [tex]\(5 - 9 = -4\)[/tex]

- Combined form: [tex]\(4x^2 - 4\)[/tex]
- This polynomial has two distinct terms: [tex]\(4x^2\)[/tex] and [tex]\(-4\)[/tex].

Classification: Binomial

In conclusion, the classifications are:
1. Binomial
2. Trinomial
3. Monomial
4. Binomial