Select the correct answer.

The endpoints of [tex]\overline{GH}[/tex] are [tex]G(10,1)[/tex] and [tex]H(3,5)[/tex]. What is the midpoint of [tex]\overline{GH}[/tex]?

A. [tex](-4,9)[/tex]

B. [tex]\left(\frac{7}{2}, 2\right)[/tex]

C. [tex]\left(\frac{13}{2}, 3\right)[/tex]

D. [tex](13,6)[/tex]



Answer :

To find the midpoint of a line segment [tex]\(\overline{GH}\)[/tex] with endpoints [tex]\(G(10, 1)\)[/tex] and [tex]\(H(3, 5)\)[/tex], follow these steps:

1. Identify the given coordinates:
- [tex]\(G(10, 1)\)[/tex]: The coordinates of point G.
- [tex]\(H(3, 5)\)[/tex]: The coordinates of point H.

2. Use the midpoint formula:
The formula to find the midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

3. Substitute the coordinates of points G and H into the formula:
- [tex]\(x_1 = 10\)[/tex], [tex]\(y_1 = 1\)[/tex]
- [tex]\(x_2 = 3\)[/tex], [tex]\(y_2 = 5\)[/tex]

4. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{10 + 3}{2} = \frac{13}{2} = 6.5 \][/tex]

5. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{1 + 5}{2} = \frac{6}{2} = 3 \][/tex]

6. Combine the results to find the midpoint:
The midpoint of [tex]\(\overline{GH}\)[/tex] is [tex]\((6.5, 3)\)[/tex].

7. Check the provided answer choices:
- A. [tex]\((-4, 9)\)[/tex]
- B. [tex]\(\left(\frac{7}{2}, 2\right)\)[/tex]
- C. [tex]\(\left(\frac{13}{2}, 3\right)\)[/tex]
- D. [tex]\((13, 6)\)[/tex]

Our computation yields [tex]\((6.5, 3)\)[/tex], which matches choice C if rewritten as [tex]\(\left(\frac{13}{2}, 3\right)\)[/tex] (since [tex]\(6.5\)[/tex] is equal to [tex]\(\frac{13}{2}\)[/tex]).

Hence, the correct answer is:
C. [tex]\(\left(\frac{13}{2}, 3\right)\)[/tex]