Which expression is equivalent to [tex]$9p - 3p + 2$[/tex]?

A. [tex]$8p$[/tex]
B. [tex][tex]$14p$[/tex][/tex]
C. [tex]$6p + 2$[/tex]
D. [tex]$9p - 1$[/tex]



Answer :

To determine which expression is equivalent to [tex]\(9p - 3p + 2\)[/tex], we need to simplify the original expression step-by-step.

1. Identify and combine like terms:
- [tex]\(9p\)[/tex] and [tex]\(-3p\)[/tex] are like terms because they both contain the variable [tex]\(p\)[/tex].

2. Combine the coefficients of the like terms:
- [tex]\(9p - 3p = (9 - 3)p = 6p\)[/tex].

3. Simplify the expression:
- After combining the like terms, the expression [tex]\(9p - 3p\)[/tex] becomes [tex]\(6p\)[/tex].
- Now, add the constant term [tex]\(2\)[/tex].

So, the simplified expression is:
[tex]\[6p + 2\][/tex]

Therefore, the expression equivalent to [tex]\(9p - 3p + 2\)[/tex] is [tex]\(6p + 2\)[/tex].

Among the given options, the correct one is:
[tex]\[6p + 2\][/tex]