Answer :
Let's go through the calculations step-by-step.
1. Given Data:
- Measurements: [tex]\( x = 8 \)[/tex], [tex]\( y = 10 \)[/tex], [tex]\( z = 5 \)[/tex]
- Sample Mean ([tex]\( \bar{x} \)[/tex]): [tex]\( \bar{x} = \frac{x + y + z}{3} = 7.67 \)[/tex]
2. Calculate the squared differences from the mean for each measurement:
- For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = (8 - 7.67)^2 = 0.1089 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{x})^2 = (10 - 7.67)^2 = 5.4289 \][/tex]
- For [tex]\( z \)[/tex]:
[tex]\[ (z - \bar{x})^2 = (5 - 7.67)^2 = 7.1289 \][/tex]
3. Fill in the table with these values:
[tex]\[ \begin{array}{|c|c|} \hline a_i & (a_i - \bar{x})^2 \\ \hline x & 0.1089 \\ \hline y & 5.4289 \\ \hline z & 7.1289 \\ \hline \end{array} \][/tex]
4. Calculate the sample variance ([tex]\( s^2 \)[/tex]):
[tex]\[ s^2 = \frac{(x - \bar{x})^2 + (y - \bar{x})^2 + (z - \bar{x})^2}{2} \][/tex]
Substitute the values:
[tex]\[ s^2 = \frac{0.1089 + 5.4289 + 7.1289}{2} = \frac{12.6667}{2} = 6.33335 \][/tex]
5. Calculate the sample standard deviation ([tex]\( s \)[/tex]):
[tex]\[ s = \sqrt{s^2} = \sqrt{6.33335} = 2.5166 \][/tex]
Finally, present the calculated values:
[tex]\[ \begin{array}{|c|c|} \hline a_i & (a_i - \bar{x})^2 \\ \hline x & 0.1089 \\ \hline y & 5.4289 \\ \hline z & 7.1289 \\ \hline \end{array} \][/tex]
[tex]\[ s^2 = \frac{(x - \bar{x})^2 + (y - \bar{x})^2 + (z - \bar{x})^2}{2} = 6.33335 \][/tex]
[tex]\[ s = \sqrt{s^2} = 2.5166 \][/tex]
1. Given Data:
- Measurements: [tex]\( x = 8 \)[/tex], [tex]\( y = 10 \)[/tex], [tex]\( z = 5 \)[/tex]
- Sample Mean ([tex]\( \bar{x} \)[/tex]): [tex]\( \bar{x} = \frac{x + y + z}{3} = 7.67 \)[/tex]
2. Calculate the squared differences from the mean for each measurement:
- For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = (8 - 7.67)^2 = 0.1089 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{x})^2 = (10 - 7.67)^2 = 5.4289 \][/tex]
- For [tex]\( z \)[/tex]:
[tex]\[ (z - \bar{x})^2 = (5 - 7.67)^2 = 7.1289 \][/tex]
3. Fill in the table with these values:
[tex]\[ \begin{array}{|c|c|} \hline a_i & (a_i - \bar{x})^2 \\ \hline x & 0.1089 \\ \hline y & 5.4289 \\ \hline z & 7.1289 \\ \hline \end{array} \][/tex]
4. Calculate the sample variance ([tex]\( s^2 \)[/tex]):
[tex]\[ s^2 = \frac{(x - \bar{x})^2 + (y - \bar{x})^2 + (z - \bar{x})^2}{2} \][/tex]
Substitute the values:
[tex]\[ s^2 = \frac{0.1089 + 5.4289 + 7.1289}{2} = \frac{12.6667}{2} = 6.33335 \][/tex]
5. Calculate the sample standard deviation ([tex]\( s \)[/tex]):
[tex]\[ s = \sqrt{s^2} = \sqrt{6.33335} = 2.5166 \][/tex]
Finally, present the calculated values:
[tex]\[ \begin{array}{|c|c|} \hline a_i & (a_i - \bar{x})^2 \\ \hline x & 0.1089 \\ \hline y & 5.4289 \\ \hline z & 7.1289 \\ \hline \end{array} \][/tex]
[tex]\[ s^2 = \frac{(x - \bar{x})^2 + (y - \bar{x})^2 + (z - \bar{x})^2}{2} = 6.33335 \][/tex]
[tex]\[ s = \sqrt{s^2} = 2.5166 \][/tex]