Classify each polynomial as constant, linear, quadratic, or cubic. Combine like terms first.

1. [tex]x^3 - 2x + x^3[/tex] [tex]\[\square\][/tex]
2. [tex]4x^2 - 6x - 8x^2[/tex] [tex]\[\square\][/tex]
3. [tex]6x - 6 + 6x[/tex] [tex]\[\square\][/tex]
4. [tex]5 + 4x^2 - 4x^2 + 5[/tex] [tex]\[\square\][/tex]

Classify each polynomial as a monomial, binomial, or trinomial. Combine like terms first.

1. [tex]x^3 + 3x^3 + 2x[/tex] [tex]\[\square\][/tex]
2. [tex]2x^3 + 5x + 3x^4 - x[/tex] [tex]\[\square\][/tex]
3. [tex]4x - 5x + x - 2[/tex] [tex]\[\square\][/tex]
4. [tex]6x^2 + 5 - 2x^2 - 9[/tex] [tex]\[\square\][/tex]



Answer :

Sure, let's classify each polynomial step-by-step by first combining like terms, and then determining its degree or the number of terms.

### Part 1: Classification by Degree

1. [tex]\( x^3 - 2x + x^3 \)[/tex]

Combine like terms:
[tex]\[ x^3 + x^3 - 2x = 2x^3 - 2x \][/tex]

The highest power is [tex]\( x^3 \)[/tex], so this is a cubic polynomial.

2. [tex]\( 4x^2 - 6x - 8x^2 \)[/tex]

Combine like terms:
[tex]\[ 4x^2 - 8x^2 - 6x = -4x^2 - 6x \][/tex]

The highest power is [tex]\( x^2 \)[/tex], so this is a quadratic polynomial.

3. [tex]\( 6x - 6 + 6x \)[/tex]

Combine like terms:
[tex]\[ 6x + 6x - 6 = 12x - 6 \][/tex]

The highest power is [tex]\( x \)[/tex], so this is a linear polynomial.

4. [tex]\( 5 + 4x^2 - 4x^2 + 5 \)[/tex]

Combine like terms:
[tex]\[ 5 + 5 + 4x^2 - 4x^2 = 10 \][/tex]

There are no [tex]\( x \)[/tex] terms present; it's just [tex]\( 10 \)[/tex], which is a constant. So this is a constant polynomial.

### Part 2: Classification by Number of Terms

1. [tex]\( x^3 + 3x^3 + 2x \)[/tex]

Combine like terms:
[tex]\[ x^3 + 3x^3 + 2x = 4x^3 + 2x \][/tex]

There are two terms: [tex]\( 4x^3 \)[/tex] and [tex]\( 2x \)[/tex]. So this is a binomial.

2. [tex]\( 2x^3 + 5x + 3x^4 - x \)[/tex]

Combine like terms:
[tex]\[ 2x^3 + 3x^4 + 4x - x = 3x^4 + 2x^3 + 4x \][/tex]

There are three distinct terms: [tex]\( 3x^4 \)[/tex], [tex]\( 2x^3 \)[/tex], and [tex]\( 4x \)[/tex]. So this is a trinomial.

3. [tex]\( 4x - 5x + x - 2 \)[/tex]

Combine like terms:
[tex]\[ 4x - 5x + x - 2 = 0 - 2 = -2 \][/tex]

After simplifying the polynomial, we are left with a constant, -2. Despite there originally being four terms, after simplification, it is a single term. So this is a monomial.

4. [tex]\( 6x^2 + 5 - 2x^2 - 9 \)[/tex]

Combine like terms:
[tex]\[ 6x^2 - 2x^2 + 5 - 9 = 4x^2 - 4 \][/tex]

There are two terms: [tex]\( 4x^2 \)[/tex] and [tex]\(-4\)[/tex]. So this is a binomial.

### Summary:
1. [tex]\( x^3 - 2x + x^3 \)[/tex] - Cubic
2. [tex]\( 4x^2 - 6x - 8x^2 \)[/tex] - Quadratic
3. [tex]\( 6x - 6 + 6x \)[/tex] - Linear
4. [tex]\( 5 + 4x^2 - 4x^2 + 5 \)[/tex] - Constant

5. [tex]\( x^3 + 3x^3 + 2x \)[/tex] - Binomial
6. [tex]\( 2x^3 + 5x + 3x^4 - x \)[/tex] - Trinomial
7. [tex]\( 4x - 5x + x - 2 \)[/tex] - Monomial
8. [tex]\( 6x^2 + 5 - 2x^2 - 9 \)[/tex] - Binomial