Select the best answer for the question.

The sum of [tex]\frac{1}{6}[/tex], [tex]\frac{2}{3}[/tex], and [tex]\frac{1}{4}[/tex] is:

A. [tex]\frac{11}{12}[/tex]

B. [tex]\frac{2}{72}[/tex], or [tex]\frac{1}{36}[/tex]

C. [tex]\frac{4}{12}[/tex], or [tex]\frac{1}{3}[/tex]

D. [tex]\frac{13}{12}[/tex], or [tex]1\frac{1}{12}[/tex]



Answer :

To find the sum of the fractions [tex]\(\frac{1}{6}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], and [tex]\(\frac{1}{4}\)[/tex], let's go through the process step by step:

1. Identify a common denominator: The common denominator for the fractions [tex]\(\frac{1}{6}\)[/tex], [tex]\(\frac{2}{3}\)[/tex], and [tex]\(\frac{1}{4}\)[/tex] is the least common multiple (LCM) of the denominators 6, 3, and 4. The LCM of 6, 3, and 4 is 12.

2. Convert each fraction to have the common denominator:
- [tex]\(\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}\)[/tex]
- [tex]\(\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}\)[/tex]
- [tex]\(\frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12}\)[/tex]

3. Add the fractions:
[tex]\[ \frac{2}{12} + \frac{8}{12} + \frac{3}{12} = \frac{2 + 8 + 3}{12} = \frac{13}{12} \][/tex]

4. Express the sum as a mixed number:
[tex]\[ \frac{13}{12} = 1 \frac{1}{12} \][/tex]

Hence, the best answer is:
[tex]\[ \boxed{\text{D. } \frac{13}{12}, \text{ or } 1 \frac{1}{12}} \][/tex]