Solve [tex]$-(3x - 2) = -4(x + 1) - 4$[/tex].

A. [tex]$-2$[/tex]
B. [tex][tex]$-10$[/tex][/tex]
C. [tex]$2$[/tex]
D. [tex]$10$[/tex]



Answer :

Certainly! Let's solve the equation step-by-step: [tex]\( -(3x - 2) = -4(x + 1) - 4 \)[/tex].

1. Distribute through the parentheses:
[tex]\[-(3x - 2) = -4(x + 1) - 4\][/tex]

Applying the negative sign to the terms inside the parentheses on the left:
[tex]\[-3x + 2 = -4(x + 1) - 4\][/tex]

2. Distribute [tex]\(-4\)[/tex] on the right side:
[tex]\[-3x + 2 = -4x - 4 - 4\][/tex]
Simplify the right side:
[tex]\[-3x + 2 = -4x - 8\][/tex]

3. Isolate [tex]\(x\)[/tex]:
Add [tex]\(4x\)[/tex] to both sides to get all terms involving [tex]\(x\)[/tex] on one side:
[tex]\[-3x + 4x + 2 = -4x + 4x - 8\][/tex]
Simplify:
[tex]\(x + 2 = -8\)[/tex]

4. Solve for [tex]\(x\)[/tex]:
Subtract 2 from both sides:
[tex]\(x + 2 - 2 = -8 - 2\)[/tex]
Simplify:
[tex]\(x = -10\)[/tex]

Therefore, the solution to the equation [tex]\( -(3x - 2) = -4(x + 1) - 4 \)[/tex] is [tex]\( x = -10 \)[/tex].

Given the options:

- [tex]\(-2\)[/tex]
- [tex]\(-10\)[/tex]
- [tex]\(2\)[/tex]
- [tex]\(10\)[/tex]

The correct answer is [tex]\(-10\)[/tex].