Answer :
Let's break down the problem step-by-step:
1. Anatoliy has a combination of nickels and quarters totaling [tex]$104$[/tex] coins:
- This means the sum of the number of nickels [tex]\( n \)[/tex] and the number of quarters [tex]\( q \)[/tex] is 104.
- We can express this relationship as the equation [tex]\( n + q = 104 \)[/tex].
2. Anatoliy's nickels and quarters together amount to $22, which is equivalent to 2200 cents:
- The value of a nickel is [tex]\( 0.05 \)[/tex] dollars (or 5 cents), and the value of a quarter is [tex]\( 0.25 \)[/tex] dollars (or 25 cents).
- The total value of the nickels and quarters can be expressed as [tex]\( 0.05n + 0.25q = 22 \)[/tex] dollars.
Combining these two pieces of information, we form the following system of linear equations to describe the problem:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]
Upon examination of the given choices:
1. [tex]\( \begin{cases} n + q = 22 \\ 0.05n + 0.25q = 104 \end{cases} \)[/tex]
2. [tex]\( \begin{cases} n + q = 104 \\ 5n + 25q = 22 \end{cases} \)[/tex]
3. [tex]\( \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \)[/tex]
4. [tex]\( \begin{cases} n + q = 22 \\ 5n + 25q = 104 \end{cases} \)[/tex]
The correct system of linear equations that represent the problem is:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]
Thus, the correct answer is the third option:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]
1. Anatoliy has a combination of nickels and quarters totaling [tex]$104$[/tex] coins:
- This means the sum of the number of nickels [tex]\( n \)[/tex] and the number of quarters [tex]\( q \)[/tex] is 104.
- We can express this relationship as the equation [tex]\( n + q = 104 \)[/tex].
2. Anatoliy's nickels and quarters together amount to $22, which is equivalent to 2200 cents:
- The value of a nickel is [tex]\( 0.05 \)[/tex] dollars (or 5 cents), and the value of a quarter is [tex]\( 0.25 \)[/tex] dollars (or 25 cents).
- The total value of the nickels and quarters can be expressed as [tex]\( 0.05n + 0.25q = 22 \)[/tex] dollars.
Combining these two pieces of information, we form the following system of linear equations to describe the problem:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]
Upon examination of the given choices:
1. [tex]\( \begin{cases} n + q = 22 \\ 0.05n + 0.25q = 104 \end{cases} \)[/tex]
2. [tex]\( \begin{cases} n + q = 104 \\ 5n + 25q = 22 \end{cases} \)[/tex]
3. [tex]\( \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \)[/tex]
4. [tex]\( \begin{cases} n + q = 22 \\ 5n + 25q = 104 \end{cases} \)[/tex]
The correct system of linear equations that represent the problem is:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]
Thus, the correct answer is the third option:
[tex]\[ \begin{cases} n + q = 104 \\ 0.05n + 0.25q = 22 \end{cases} \][/tex]