Express [tex]a[/tex] in terms of [tex]c[/tex], simplifying your answer as much as possible.

[tex]
a = 3b^3 + 2b^6, \text{ where } b = (4c + 3)^{\frac{1}{3}}
[/tex]



Answer :

To express [tex]\( a \)[/tex] in terms of [tex]\( c \)[/tex], we start with the given definitions:

[tex]\[ a = 3b^3 + 2b^6 \][/tex]
[tex]\[ b = (4c + 3)^{1/3} \][/tex]

First, we need to substitute [tex]\( b \)[/tex] into the expression for [tex]\( a \)[/tex]. Given that [tex]\( b = (4c + 3)^{1/3} \)[/tex], we can find [tex]\( b^3 \)[/tex] and [tex]\( b^6 \)[/tex].

Calculating [tex]\( b^3 \)[/tex]:

[tex]\[ b^3 = \left( (4c + 3)^{1/3} \right)^3 = 4c + 3 \][/tex]

Next, calculating [tex]\( b^6 \)[/tex]:

[tex]\[ b^6 = \left( (4c + 3)^{1/3} \right)^6 = (4c + 3)^2 \][/tex]

Now substitute these results back into the expression for [tex]\( a \)[/tex]:

[tex]\[ a = 3b^3 + 2b^6 \][/tex]

Replace [tex]\( b^3 \)[/tex] and [tex]\( b^6 \)[/tex]:

[tex]\[ a = 3(4c + 3) + 2(4c + 3)^2 \][/tex]

Simplifying further:

[tex]\[ a = 3(4c + 3) + 2(4c + 3)^2 \][/tex]

Finally, write this expression in its simplest form:

[tex]\[ a = 3(4c + 3) + 2(4c + 3)^2 \][/tex]

Thus, the simplified expression for [tex]\( a \)[/tex] in terms of [tex]\( c \)[/tex] is:

[tex]\[ a = 3(4c + 3) + 2(4c + 3)^2 \][/tex]