Select the correct answer.

What are the values of [tex]$x$[/tex] and [tex]$y$[/tex] if this equation is true?

[tex]22(x + y i) + (28 + 4 i) = 72 - 62 i[/tex]

A. [tex]x = 3[/tex] and [tex]y = 2[/tex]

B. [tex]x = 2[/tex] and [tex]y = -3[/tex]

C. [tex]x = 2[/tex] and [tex]y = 3[/tex]

D. [tex]x = -3[/tex] and [tex]y = -2[/tex]



Answer :

To determine the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] such that the equation

[tex]\[ 22(x + yi) + (28 + 4i) = 72 - 62i \][/tex]

holds true, we need to separate the given equation into its real and imaginary parts and solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] step-by-step.

1. Separate the equation into real and imaginary parts:

We start with:
[tex]\[ 22(x + yi) + (28 + 4i) = 72 - 62i \][/tex]

Distributing the 22 on the left side:
[tex]\[ 22x + 22yi + 28 + 4i = 72 - 62i \][/tex]

2. Combine like terms:

Combine the real parts and the imaginary parts separately on the left side:
[tex]\[ (22x + 28) + (22y + 4)i = 72 - 62i \][/tex]

3. Equate the real and imaginary components:

By comparing the real and imaginary parts from both sides of the equation, we get the two equations:
[tex]\[ 22x + 28 = 72 \tag{Real part} \][/tex]
[tex]\[ 22y + 4 = -62 \tag{Imaginary part} \][/tex]

4. Solve for [tex]\( x \)[/tex]:

[tex]\[ 22x + 28 = 72 \][/tex]
[tex]\[ 22x = 72 - 28 \][/tex]
[tex]\[ 22x = 44 \][/tex]
[tex]\[ x = \frac{44}{22} \][/tex]
[tex]\[ x = 2 \][/tex]

5. Solve for [tex]\( y \)[/tex]:

[tex]\[ 22y + 4 = -62 \][/tex]
[tex]\[ 22y = -62 - 4 \][/tex]
[tex]\[ 22y = -66 \][/tex]
[tex]\[ y = \frac{-66}{22} \][/tex]
[tex]\[ y = -3 \][/tex]

Therefore, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given equation are:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = -3 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{B. \, x = 2 \text{ and } y = -3} \][/tex]