Answer :
Let's solve the expression [tex]\((6+3) \div (4-5)\)[/tex] step by step by recalling the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (left to right), Addition and Subtraction (left to right)).
1. Parentheses: Solve the expressions inside parentheses first.
- [tex]\( 6 + 3 \)[/tex] within the parentheses evaluates to [tex]\( 9 \)[/tex].
- [tex]\( 4 - 5 \)[/tex] within the parentheses evaluates to [tex]\( -1 \)[/tex].
After solving the parentheses, the expression simplifies to:
[tex]\[ 9 \div -1 \][/tex]
2. Division: Perform the division operation next.
- [tex]\( 9 \div -1 \)[/tex] evaluates to [tex]\( -9.0 \)[/tex].
Therefore, the value of the expression [tex]\((6 + 3) \div (4 - 5)\)[/tex] is [tex]\(\boxed{-9.0}\)[/tex].
1. Parentheses: Solve the expressions inside parentheses first.
- [tex]\( 6 + 3 \)[/tex] within the parentheses evaluates to [tex]\( 9 \)[/tex].
- [tex]\( 4 - 5 \)[/tex] within the parentheses evaluates to [tex]\( -1 \)[/tex].
After solving the parentheses, the expression simplifies to:
[tex]\[ 9 \div -1 \][/tex]
2. Division: Perform the division operation next.
- [tex]\( 9 \div -1 \)[/tex] evaluates to [tex]\( -9.0 \)[/tex].
Therefore, the value of the expression [tex]\((6 + 3) \div (4 - 5)\)[/tex] is [tex]\(\boxed{-9.0}\)[/tex].