Answer :
To find an expression equivalent to [tex]\(\sqrt{45}\)[/tex], we need to simplify it.
1. Factorize the number inside the square root:
[tex]\[ 45 = 9 \times 5 \][/tex]
Here, 9 is a perfect square.
2. Rewrite the square root using its factors:
[tex]\[ \sqrt{45} = \sqrt{9 \times 5} \][/tex]
3. Apply the property of square roots that allows us to separate the factors:
[tex]\[ \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} \][/tex]
4. Simplify the square root of the perfect square:
[tex]\[ \sqrt{9} = 3 \][/tex]
Therefore,
[tex]\[ \sqrt{9} \times \sqrt{5} = 3 \times \sqrt{5} \][/tex]
So, the expression [tex]\(\sqrt{45}\)[/tex] simplifies to [tex]\(3 \sqrt{5}\)[/tex].
Thus, the correct answer is:
B. [tex]\(3 \sqrt{5}\)[/tex]
1. Factorize the number inside the square root:
[tex]\[ 45 = 9 \times 5 \][/tex]
Here, 9 is a perfect square.
2. Rewrite the square root using its factors:
[tex]\[ \sqrt{45} = \sqrt{9 \times 5} \][/tex]
3. Apply the property of square roots that allows us to separate the factors:
[tex]\[ \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} \][/tex]
4. Simplify the square root of the perfect square:
[tex]\[ \sqrt{9} = 3 \][/tex]
Therefore,
[tex]\[ \sqrt{9} \times \sqrt{5} = 3 \times \sqrt{5} \][/tex]
So, the expression [tex]\(\sqrt{45}\)[/tex] simplifies to [tex]\(3 \sqrt{5}\)[/tex].
Thus, the correct answer is:
B. [tex]\(3 \sqrt{5}\)[/tex]