Select the correct answer.

Which expression is equivalent to the given expression? [tex]\sqrt{45}[/tex]

A. [tex]9 \sqrt{5}[/tex]

B. [tex]3 \sqrt{5}[/tex]

C. [tex]5 \sqrt{3}[/tex]

D. [tex]5 \sqrt{9}[/tex]



Answer :

To find an expression equivalent to [tex]\(\sqrt{45}\)[/tex], we need to simplify it.

1. Factorize the number inside the square root:

[tex]\[ 45 = 9 \times 5 \][/tex]

Here, 9 is a perfect square.

2. Rewrite the square root using its factors:

[tex]\[ \sqrt{45} = \sqrt{9 \times 5} \][/tex]

3. Apply the property of square roots that allows us to separate the factors:

[tex]\[ \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} \][/tex]

4. Simplify the square root of the perfect square:

[tex]\[ \sqrt{9} = 3 \][/tex]

Therefore,

[tex]\[ \sqrt{9} \times \sqrt{5} = 3 \times \sqrt{5} \][/tex]

So, the expression [tex]\(\sqrt{45}\)[/tex] simplifies to [tex]\(3 \sqrt{5}\)[/tex].

Thus, the correct answer is:
B. [tex]\(3 \sqrt{5}\)[/tex]