SECTION - B

11. Show that [tex]$0.5858585 \ldots=0.5 \overline{85}$[/tex] can be expressed in the form [tex]$\frac{p}{q}$[/tex], where [tex][tex]$p$[/tex][/tex] and [tex]$q$[/tex] are integers and [tex]$q \neq 0$[/tex].



Answer :

Certainly! Let's convert the repeating decimal [tex]\( 0.585858\ldots \)[/tex] (which can be written as [tex]\( 0.5\overline{85} \)[/tex]) into a fraction in the form [tex]\( \frac{p}{q} \)[/tex], where [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are integers and [tex]\( q \neq 0 \)[/tex].

To do this, we will follow these steps:

1. Let [tex]\( x = 0.585858\ldots \)[/tex]:
[tex]\[ x = 0.585858\ldots \][/tex]

2. Multiply both sides by 100 (since the repeating block "85" is two digits long):
[tex]\[ 100x = 58.585858\ldots \][/tex]

3. Now, we have the two equations:
[tex]\[ x = 0.585858\ldots \quad \text{(Equation 1)} \][/tex]
[tex]\[ 100x = 58.585858\ldots \quad \text{(Equation 2)} \][/tex]

4. Subtract Equation 1 from Equation 2 to eliminate the repeating part:
[tex]\[ 100x - x = 58.585858\ldots - 0.585858\ldots \][/tex]
[tex]\[ 99x = 58 \][/tex]

5. Solve for [tex]\( x \)[/tex] by dividing both sides by 99:
[tex]\[ x = \frac{58}{99} \][/tex]

So, the repeating decimal [tex]\( 0.585858\ldots \)[/tex] can be expressed in fraction form as [tex]\( \frac{58}{99} \)[/tex].

Thus, [tex]\( \frac{58}{99} \)[/tex] is the fraction representation for [tex]\( 0.585858\ldots \)[/tex], where [tex]\( p = 58 \)[/tex] and [tex]\( q = 99 \)[/tex].