Add Functions

Use the tables below to find [tex]\((p+q)(2)\)[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$p(x)$[/tex] \\
\hline
4 & -1 \\
\hline
2 & 3 \\
\hline
-3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$q(x)$[/tex] \\
\hline
4 & 1 \\
\hline
2 & -2 \\
\hline
-3 & 5 \\
\hline
\end{tabular}

[tex]\((p+q)(2) = \square\)[/tex]



Answer :

To determine [tex]\((p + q)(2)\)[/tex], we'll need to follow these steps:

1. Identify the values of [tex]\(p(2)\)[/tex] and [tex]\(q(2)\)[/tex] from their respective tables.
- From the table for [tex]\(p(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline 4 & -1 \\ \hline 2 & 3 \\ \hline -3 & 2 \\ \hline \end{array} \][/tex]
We see that [tex]\( p(2) = 3 \)[/tex].

- From the table for [tex]\(q(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & q(x) \\ \hline 4 & 1 \\ \hline 2 & -2 \\ \hline -3 & 5 \\ \hline \end{array} \][/tex]
We see that [tex]\( q(2) = -2 \)[/tex].

2. Calculate [tex]\( p(2) + q(2) \)[/tex]:
[tex]\[ p(2) + q(2) = 3 + (-2) = 3 - 2 = 1 \][/tex]

So, [tex]\((p + q)(2)\)[/tex] is:
[tex]\[ (p + q)(2) = 1 \][/tex]

Thus, the final result is [tex]\(\boxed{1}\)[/tex].