Answer :
To find the difference of the functions [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex], we follow these steps:
1. Write down the given functions:
[tex]\[ r(x) = -x^2 + 3x \][/tex]
[tex]\[ s(x) = 2x + 1 \][/tex]
2. Calculate the difference [tex]\( (s - r)(x) \)[/tex]:
[tex]\[ (s - r)(x) = s(x) - r(x) \][/tex]
3. Substitute the expressions for [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex]:
[tex]\[ s(x) - r(x) = (2x + 1) - (-x^2 + 3x) \][/tex]
4. Simplify the expression:
[tex]\[ (2x + 1) - (-x^2 + 3x) = 2x + 1 + x^2 - 3x \][/tex]
5. Combine like terms:
[tex]\[ 2x + 1 + x^2 - 3x = x^2 + (2x - 3x) + 1 = x^2 - x + 1 \][/tex]
Therefore, the difference of the functions [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex] is:
[tex]\[ (s - r)(x) = x^2 - x + 1 \][/tex]
1. Write down the given functions:
[tex]\[ r(x) = -x^2 + 3x \][/tex]
[tex]\[ s(x) = 2x + 1 \][/tex]
2. Calculate the difference [tex]\( (s - r)(x) \)[/tex]:
[tex]\[ (s - r)(x) = s(x) - r(x) \][/tex]
3. Substitute the expressions for [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex]:
[tex]\[ s(x) - r(x) = (2x + 1) - (-x^2 + 3x) \][/tex]
4. Simplify the expression:
[tex]\[ (2x + 1) - (-x^2 + 3x) = 2x + 1 + x^2 - 3x \][/tex]
5. Combine like terms:
[tex]\[ 2x + 1 + x^2 - 3x = x^2 + (2x - 3x) + 1 = x^2 - x + 1 \][/tex]
Therefore, the difference of the functions [tex]\( s(x) \)[/tex] and [tex]\( r(x) \)[/tex] is:
[tex]\[ (s - r)(x) = x^2 - x + 1 \][/tex]