Use the function below to find [tex]f(-4)[/tex].

[tex]
f(x) = 2^x
[/tex]

A. -8
B. -16
C. [tex]\frac{1}{8}[/tex]
D. [tex]\frac{1}{16}[/tex]



Answer :

To find [tex]\( f(-4) \)[/tex] for the given function [tex]\( f(x) = 2^x \)[/tex], you can follow these steps:

1. Substitute [tex]\( x = -4 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(-4) = 2^{-4} \][/tex]

2. Simplify the expression [tex]\( 2^{-4} \)[/tex]. Recall that a negative exponent indicates a reciprocal. Thus, [tex]\( 2^{-4} \)[/tex] is the same as [tex]\( \frac{1}{2^4} \)[/tex]:
[tex]\[ 2^{-4} = \frac{1}{2^4} \][/tex]

3. Calculate [tex]\( 2^4 \)[/tex]:
[tex]\[ 2^4 = 2 \times 2 \times 2 \times 2 = 16 \][/tex]

4. Substitute [tex]\( 2^4 \)[/tex] back into the reciprocal to get:
[tex]\[ \frac{1}{2^4} = \frac{1}{16} \][/tex]

So, the value of [tex]\( f(-4) \)[/tex] is [tex]\( \frac{1}{16} \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]