Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\frac{\left(4 m^2 n\right)^2}{2 m^3 n}[/tex]

A. [tex]8 m^{-1} n[/tex]

B. [tex]4 m^{-1} n[/tex]

C. [tex]8 m^9 n^3[/tex]

D. [tex]4 m^9 n^3[/tex]



Answer :

To simplify the given expression, [tex]\(\frac{(4m^2n)^2}{2m^3n}\)[/tex], let's break it down step-by-step:

1. Simplify the numerator:
[tex]\[ (4m^2n)^2 \][/tex]
When raising a product to a power, raise each factor to the power:
[tex]\[ (4)^2 \cdot (m^2)^2 \cdot (n)^2 \][/tex]
Calculate each term:
[tex]\[ 16m^4n^2 \][/tex]

2. Simplify the denominator:
[tex]\[ 2m^3n \][/tex]

3. Combine the fraction:
[tex]\[ \frac{16m^4n^2}{2m^3n} \][/tex]

4. Simplify the coefficients:
[tex]\[ \frac{16}{2} = 8 \][/tex]

5. Simplify the [tex]\(m\)[/tex]-terms:
[tex]\[ \frac{m^4}{m^3} = m^{4-3} = m \][/tex]

6. Simplify the [tex]\(n\)[/tex]-terms:
[tex]\[ \frac{n^2}{n} = n^{2-1} = n \][/tex]

Putting it all together:
[tex]\[ 8mn \][/tex]

Thus, the expression [tex]\(\frac{(4m^2n)^2}{2m^3n}\)[/tex] simplifies to [tex]\(8mn\)[/tex], which corresponds to [tex]\(8m^1n^1\)[/tex].

Given the options, the correct answer is:
A. [tex]\(8m^{-1}n\)[/tex]
B. [tex]\(4m^{-1}n\)[/tex]
C. [tex]\(8m^9n^3\)[/tex]
D. [tex]\(4m^9n^3\)[/tex]

So the correct answer is:
None of the above are correct as `8 m n is not present in the given options.`