Answer :

To solve the problem step by step, let's analyze the given functions and their operations.

1. Function Definition:
We start with the function [tex]\( g(x) = x - 6 \)[/tex].

2. Opposite Function:
The opposite of [tex]\( g(x) \)[/tex] is [tex]\( -g(x) \)[/tex]. By definition, this means multiplying the entire function [tex]\( g(x) \)[/tex] by [tex]\(-1\)[/tex].

3. Calculate [tex]\(-g(x)\)[/tex]:
[tex]\[ -g(x) = -(x - 6) \][/tex]
Applying the negative sign inside the parentheses, we distribute:
[tex]\[ -g(x) = -x + 6 \][/tex]

4. Sum of [tex]\( g(x) \)[/tex] and [tex]\( -g(x) \)[/tex]:
Now we need to compute the sum of [tex]\( g(x) \)[/tex] and [tex]\( -g(x) \)[/tex]:

[tex]\[ g(x) + (-g(x)) = (x - 6) + (-x + 6) \][/tex]

5. Combine Like Terms:
Let's add the terms:
[tex]\[ x - 6 - x + 6 \][/tex]

Combine [tex]\( x \)[/tex] and [tex]\(-x\)[/tex]:
[tex]\[ x - x = 0 \][/tex]

Combine [tex]\(-6\)[/tex] and [tex]\(6\)[/tex]:
[tex]\[ -6 + 6 = 0 \][/tex]

So the entire expression reduces to:
[tex]\[ 0 + 0 = 0 \][/tex]

6. Final Result:
Therefore, the result of [tex]\( g(x) + (-g(x)) \)[/tex] is:
[tex]\[ 0 \][/tex]

In conclusion, the sum [tex]\( g(x) + (-g(x)) \)[/tex] simplifies to [tex]\( 0 \)[/tex].