The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, [tex]\hat{y} = b_0 + b_1 x[/tex], for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Age & 34 & 45 & 48 & 60 & 65 \\
\hline Bone Density & 357 & 341 & 331 & 329 & 325 \\
\hline
\end{tabular}

Step 2 of 6: Find the estimated [tex]y[/tex]-intercept. Round your answer to three decimal places.



Answer :

To find the estimated [tex]\( y \)[/tex]-intercept ([tex]\( b_0 \)[/tex]) of the regression line, we need to follow these steps:

1. Calculate the means of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

[tex]\[ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \][/tex]
[tex]\[ \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \][/tex]
Here, [tex]\( n \)[/tex] is the number of data points, [tex]\( X_i \)[/tex] represents the age values, and [tex]\( Y_i \)[/tex] represents the bone density values.

2. Calculate the slope ([tex]\( b_1 \)[/tex]):

[tex]\[ b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \][/tex]

3. Calculate the [tex]\( y \)[/tex]-intercept ([tex]\( b_0 \)[/tex]):

[tex]\[ b_0 = \bar{Y} - b_1 \bar{X} \][/tex]

Given the numerical solution:
- The [tex]\( y \)[/tex]-intercept ([tex]\( b_0 \)[/tex]) is determined to be 385.18 when rounded to three decimal places.
- The slope ([tex]\( b_1 \)[/tex]) is approximately -0.9638871 (though not directly needed for determining [tex]\( b_0 \)[/tex], it's useful for understanding the whole equation).

Hence, after performing the calculations and following the steps to find the estimated [tex]\( y \)[/tex]-intercept for the regression line, we obtain:
[tex]\[ b_0 = 385.180 \][/tex]

Therefore, the estimated [tex]\( y \)[/tex]-intercept of the regression line, rounded to three decimal places, is 385.180.