Consider this expression.

[tex]\[ -4x^2 + 2x - 5(1 + x) \][/tex]

What expression is equivalent to the given expression?

[tex]\[\square x^2 + \square x + \square\][/tex]

Type the correct answer in each box. Use numerals instead of words.



Answer :

To find an equivalent expression for [tex]\( -4x^2 + 2x - 5(1 + x) \)[/tex], we need to simplify it.

### Step-by-Step Simplification:

1. Distribute the -5 through the parentheses:
[tex]\[ -5(1 + x) = -5 \cdot 1 + (-5) \cdot x = -5 - 5x \][/tex]

2. Substitute the distributed terms back into the original expression:
[tex]\[ -4x^2 + 2x - 5 - 5x \][/tex]

3. Combine like terms:
[tex]\[ -4x^2 + 2x - 5 - 5x = -4x^2 + (2x - 5x) - 5 \][/tex]

4. Simplify within the parentheses:
[tex]\[ 2x - 5x = -3x \][/tex]

5. Put the simplified terms together:
[tex]\[ -4x^2 - 3x - 5 \][/tex]

So, the simplified expression equivalent to [tex]\( -4x^2 + 2x - 5(1 + x) \)[/tex] is:
[tex]\[ -4x^2 - 3x - 5 \][/tex]

Therefore, the equivalent expression in the given boxes would be completed as:
[tex]\[ \boxed{-4}x^2 + \boxed{-3}x + \boxed{-5} \][/tex]