What is the [tex]y[/tex]-intercept of [tex]f(x)=\left(\frac{3}{5}\right)^x[/tex]?

A. [tex](0,0)[/tex]
B. [tex]\left(1, \frac{3}{5}\right)[/tex]
C. [tex](0,1)[/tex]
D. [tex](1,0)[/tex]



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the function [tex]\( f(x) = \left(\frac{3}{5}\right)^x \)[/tex], we need to find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 0 \)[/tex]. The [tex]\( y \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis, which occurs at [tex]\( x = 0 \)[/tex].

1. Substitute [tex]\( x = 0 \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(0) = \left(\frac{3}{5}\right)^0 \][/tex]

2. Any non-zero number raised to the power of 0 is equal to 1:

[tex]\[ \left(\frac{3}{5}\right)^0 = 1 \][/tex]

3. Thus, the [tex]\( y \)[/tex]-intercept is:

[tex]\[ (0, 1) \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{(0,1)} \][/tex]