Select all the correct answers.

Which expressions are equivalent to the given expression? [tex] y^3 y^3 x^0 x^{-2} [/tex]

A. [tex] \frac{1}{z^2 y^5} [/tex]
B. [tex] \frac{1}{y^{2 x}} [/tex]
C. [tex] \frac{x^2}{y^{12}} [/tex]
D. [tex] y^{-24} [/tex]
E. [tex] z^{-2} y^{-5} [/tex]



Answer :

To determine which of the given expressions are equivalent to the original expression [tex]\( y^3 y^3 x^0 x^{-2} \)[/tex], let's go through each step carefully and analyze the expression.

### Step-by-Step Solution:

1. Start with the original expression:
[tex]\[ y^3 y^3 x^0 x^{-2} \][/tex]

2. Simplify the expression:

- Combine the [tex]\( y \)[/tex] terms:
[tex]\[ y^3 \cdot y^3 = y^{3+3} = y^6 \][/tex]

- Combine the [tex]\( x \)[/tex] terms:
[tex]\[ x^0 \cdot x^{-2} = x^{0+(-2)} = x^{-2} \][/tex]

- Therefore, the simplified form of the expression is:
[tex]\[ y^6 x^{-2} \][/tex]

3. Compare the simplified expression with the list of given expressions:

- [tex]\( x^2 y^{-11} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( x^2 y^{-11} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

- [tex]\( \frac{1}{z^2 y^5} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( \frac{1}{z^2 y^5} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

- [tex]\( \frac{1}{y^{2 x}} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( \frac{1}{y^{2 x}} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

- [tex]\( \frac{x^2}{y^{12}} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( \frac{x^2}{y^{12}} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

- [tex]\( y^{-24} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( y^{-24} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

- [tex]\( z^{-2} y^{-5} \)[/tex]:
- The simplified expression is [tex]\( y^6 x^{-2} \)[/tex].
- [tex]\( z^{-2} y^{-5} \)[/tex] does not match [tex]\( y^6 x^{-2} \)[/tex].

### Conclusion:

Upon reviewing and simplifying the given expression, none of the provided expressions match the simplified form [tex]\( y^6 x^{-2} \)[/tex]. Therefore, the expressions equivalent to the given expression [tex]\( y^3 y^3 x^0 x^{-2} \)[/tex] are:

[tex]\[ [\text{None of these}] \][/tex]

So, the result is:
[tex]\[ [False, None, False, False, None, None] \][/tex]

None of the provided expressions are equivalent to [tex]\( y^6 x^{-2} \)[/tex].