Which of the following is the radical expression of [tex]$4 d^{\frac{3}{8}}$[/tex]?

A. [tex]$4 \sqrt[8]{d^3}$[/tex]
B. [tex][tex]$4 \sqrt[3]{d^8}$[/tex][/tex]
C. [tex]$\sqrt[8]{4 d^3}$[/tex]
D. [tex]$\sqrt[3]{4 d^8}$[/tex]



Answer :

To determine which of the provided options is the correct radical expression for [tex]\( 4 d^{\frac{3}{8}} \)[/tex], we will begin by expressing [tex]\( d^{\frac{3}{8}} \)[/tex] in radical form and then multiply by 4.

1. Recall that a fractional exponent can be written as a radical:
[tex]\[ d^{\frac{3}{8}} = \sqrt[8]{d^3} \][/tex]

2. Therefore:
[tex]\[ 4 d^{\frac{3}{8}} = 4 \sqrt[8]{d^3} \][/tex]

Now, we compare this with the given options:

- Option 1: [tex]\( 4 \sqrt[8]{d^3} \)[/tex]
- Option 2: [tex]\( 4 \sqrt[3]{d^8} \)[/tex]
- Option 3: [tex]\( \sqrt[8]{4 d^3} \)[/tex]
- Option 4: [tex]\( \sqrt[3]{4 d^8} \)[/tex]

From step 1 and step 2, it's clear that [tex]\( 4 d^{\frac{3}{8}} \)[/tex] is identical to [tex]\( 4 \sqrt[8]{d^3} \)[/tex]. Therefore, the correct option is:

[tex]\[ \boxed{4 \sqrt[8]{d^3}} \][/tex]