Question 9 (Multiple Choice, Worth 5 Points)

Triangle [tex]L M N[/tex] has vertices at [tex]L(-1, 5), M(-1, 0), N(-2, 5)[/tex]. Determine the vertices of image [tex]L^{\prime} M^{\prime} N^{\prime}[/tex] if the preimage is rotated [tex]90^{\circ}[/tex] clockwise about the origin.

A. [tex]L^{\prime}(5, 1), M^{\prime}(0, 1), N^{\prime}(5, 2)[/tex]
B. [tex]L^{\prime}(-1, -5), M^{\prime}(-1, 0), N^{\prime}(-2, -5)[/tex]
C. [tex]L^{\prime}(-5, -1), M^{\prime}(0, -1), N^{\prime}(-5, -2)[/tex]
D. [tex]L^{\prime}(1, -5), M^{\prime}(1, 0), N^{\prime}(2, -5)[/tex]



Answer :

To determine the vertices of the image [tex]\( L^{\prime}M^{\prime}N^{\prime} \)[/tex] after rotating the preimage [tex]\( LMN \)[/tex] 90 degrees clockwise about the origin, we follow these steps for each vertex:

1. Start with the coordinates of each vertex of the triangle [tex]\( LMN \)[/tex]:
- [tex]\( L(-1, 5) \)[/tex]
- [tex]\( M(-1, 0) \)[/tex]
- [tex]\( N(-2, 5) \)[/tex]

2. Apply the transformation rule for a 90-degree clockwise rotation about the origin. This rule changes a point [tex]\((x, y) \)[/tex] to [tex]\((y, -x) \)[/tex].

Using this transformation rule:

- For vertex [tex]\( L(-1, 5) \)[/tex]:
[tex]\[ L^{\prime} = (y, -x) = (5, -(-1)) = (5, 1) \][/tex]

- For vertex [tex]\( M(-1, 0) \)[/tex]:
[tex]\[ M^{\prime} = (y, -x) = (0, -(-1)) = (0, 1) \][/tex]

- For vertex [tex]\( N(-2, 5) \)[/tex]:
[tex]\[ N^{\prime} = (y, -x) = (5, -(-2)) = (5, 2) \][/tex]

3. Compile the new coordinates of the vertices:
- [tex]\( L^{\prime}(5, 1) \)[/tex]
- [tex]\( M^{\prime}(0, 1) \)[/tex]
- [tex]\( N^{\prime}(5, 2) \)[/tex]

Thus, the vertices of the image [tex]\( L^{\prime}M^{\prime}N^{\prime} \)[/tex], after a 90-degree clockwise rotation, are:

[tex]\[ L^{\prime}(5, 1), M^{\prime}(0, 1), N^{\prime}(5, 2) \][/tex]

Therefore, the correct option is:
- [tex]\( L^{\prime}(5,1), M^{\prime}(0,1), N^{\prime}(5,2) \)[/tex]